These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
243 related items for PubMed ID: 17766250
1. Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Zhang H, Cao W, Zakharova E, Konigsberg W, De La Cruz EM. Nucleic Acids Res; 2007; 35(18):6052-62. PubMed ID: 17766250 [Abstract] [Full Text] [Related]
2. Effect of A and B metal ion site occupancy on conformational changes in an RB69 DNA polymerase ternary complex. Wang M, Lee HR, Konigsberg W. Biochemistry; 2009 Mar 17; 48(10):2075-86. PubMed ID: 19228037 [Abstract] [Full Text] [Related]
3. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment). Purohit V, Grindley ND, Joyce CM. Biochemistry; 2003 Sep 02; 42(34):10200-11. PubMed ID: 12939148 [Abstract] [Full Text] [Related]
4. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Tleugabulova D, Reha-Krantz LJ. Biochemistry; 2007 Jun 05; 46(22):6559-69. PubMed ID: 17497891 [Abstract] [Full Text] [Related]
5. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM, Otto MR, Bloom LB, Eritja R, Reha-Krantz LJ, Goodman MF. Biochemistry; 1998 Jul 14; 37(28):10144-55. PubMed ID: 9665720 [Abstract] [Full Text] [Related]
6. Using 2-aminopurine fluorescence to detect bacteriophage T4 DNA polymerase-DNA complexes that are important for primer extension and proofreading reactions. Hariharan C, Reha-Krantz LJ. Biochemistry; 2005 Dec 06; 44(48):15674-84. PubMed ID: 16313170 [Abstract] [Full Text] [Related]
7. Using 2-aminopurine fluorescence to detect base unstacking in the template strand during nucleotide incorporation by the bacteriophage T4 DNA polymerase. Mandal SS, Fidalgo da Silva E, Reha-Krantz LJ. Biochemistry; 2002 Apr 02; 41(13):4399-406. PubMed ID: 11914087 [Abstract] [Full Text] [Related]
8. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM, Grindley ND, Joyce CM. Biochemistry; 2007 Sep 25; 46(38):10790-803. PubMed ID: 17725324 [Abstract] [Full Text] [Related]
9. Dynamics of nucleotide incorporation: snapshots revealed by 2-aminopurine fluorescence studies. Hariharan C, Bloom LB, Helquist SA, Kool ET, Reha-Krantz LJ. Biochemistry; 2006 Mar 07; 45(9):2836-44. PubMed ID: 16503638 [Abstract] [Full Text] [Related]
10. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Frey MW, Sowers LC, Millar DP, Benkovic SJ. Biochemistry; 1995 Jul 18; 34(28):9185-92. PubMed ID: 7619819 [Abstract] [Full Text] [Related]
11. Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Reha-Krantz LJ, Hariharan C, Subuddhi U, Xia S, Zhao C, Beckman J, Christian T, Konigsberg W. Biochemistry; 2011 Nov 22; 50(46):10136-49. PubMed ID: 22023103 [Abstract] [Full Text] [Related]
12. The use of 2-aminopurine fluorescence to study DNA polymerase function. Reha-Krantz LJ. Methods Mol Biol; 2009 Nov 22; 521():381-96. PubMed ID: 19563118 [Abstract] [Full Text] [Related]
13. Base selectivity is impaired by mutants that perturb hydrogen bonding networks in the RB69 DNA polymerase active site. Yang G, Wang J, Konigsberg W. Biochemistry; 2005 Mar 08; 44(9):3338-46. PubMed ID: 15736944 [Abstract] [Full Text] [Related]
14. Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes. Dahl JM, Wang H, Lázaro JM, Salas M, Lieberman KR. Biochemistry; 2014 Dec 30; 53(51):8061-76. PubMed ID: 25478721 [Abstract] [Full Text] [Related]
15. Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase. Bloom LB, Otto MR, Eritja R, Reha-Krantz LJ, Goodman MF, Beechem JM. Biochemistry; 1994 Jun 21; 33(24):7576-86. PubMed ID: 8011623 [Abstract] [Full Text] [Related]
16. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR, Bloom LB, Goodman MF, Beechem JM. Biochemistry; 1998 Jul 14; 37(28):10156-63. PubMed ID: 9665721 [Abstract] [Full Text] [Related]
17. The reopening rate of the fingers domain is a determinant of base selectivity for RB69 DNA polymerase. Lee HR, Wang M, Konigsberg W. Biochemistry; 2009 Mar 17; 48(10):2087-98. PubMed ID: 19228036 [Abstract] [Full Text] [Related]
18. Using 2-aminopurine fluorescence to measure incorporation of incorrect nucleotides by wild type and mutant bacteriophage T4 DNA polymerases. Fidalgo da Silva E, Mandal SS, Reha-Krantz LJ. J Biol Chem; 2002 Oct 25; 277(43):40640-9. PubMed ID: 12189135 [Abstract] [Full Text] [Related]
19. Determining Steady-State Kinetics of DNA Polymerase Nucleotide Incorporation. Gahlon HL, Sturla SJ. Methods Mol Biol; 2019 Oct 25; 1973():299-311. PubMed ID: 31016710 [Abstract] [Full Text] [Related]
20. RB69 DNA polymerase structure, kinetics, and fidelity. Xia S, Konigsberg WH. Biochemistry; 2014 May 06; 53(17):2752-67. PubMed ID: 24720884 [Abstract] [Full Text] [Related] Page: [Next] [New Search]