These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 17766298

  • 1. An isolated insect leg's passive recovery from dorso-ventral perturbations.
    Dudek DM, Full RJ.
    J Exp Biol; 2007 Sep; 210(Pt 18):3209-17. PubMed ID: 17766298
    [Abstract] [Full Text] [Related]

  • 2. Passive mechanical properties of legs from running insects.
    Dudek DM, Full RJ.
    J Exp Biol; 2006 Apr; 209(Pt 8):1502-15. PubMed ID: 16574808
    [Abstract] [Full Text] [Related]

  • 3. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain.
    Sponberg S, Full RJ.
    J Exp Biol; 2008 Feb; 211(Pt 3):433-46. PubMed ID: 18203999
    [Abstract] [Full Text] [Related]

  • 4. Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects.
    Schmitt J, Garcia M, Razo RC, Holmes P, Full RJ.
    Biol Cybern; 2002 May; 86(5):343-53. PubMed ID: 11984649
    [Abstract] [Full Text] [Related]

  • 5. Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.
    Revzen S, Burden SA, Moore TY, Mongeau JM, Full RJ.
    Biol Cybern; 2013 Apr; 107(2):179-200. PubMed ID: 23371006
    [Abstract] [Full Text] [Related]

  • 6. Leg recirculation in horizontal plane locomotion.
    Wickramasuriya A, Schmitt J.
    Biol Cybern; 2009 Oct; 101(4):247-63. PubMed ID: 19787371
    [Abstract] [Full Text] [Related]

  • 7. Mechanical models for insect locomotion: active muscles and energy losses.
    Schmitt J, Holmes P.
    Biol Cybern; 2003 Jul; 89(1):43-55. PubMed ID: 12836032
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A hexapedal jointed-leg model for insect locomotion in the horizontal plane.
    Kukillaya RP, Holmes PJ.
    Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063
    [Abstract] [Full Text] [Related]

  • 11. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
    Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ.
    Bioinspir Biomim; 2007 Mar; 2(1):9-18. PubMed ID: 17671322
    [Abstract] [Full Text] [Related]

  • 12. Characterization of running with compliant curved legs.
    Jun JY, Clark JE.
    Bioinspir Biomim; 2015 Jul 07; 10(4):046008. PubMed ID: 26151098
    [Abstract] [Full Text] [Related]

  • 13. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron.
    Ahn AN, Meijer K, Full RJ.
    J Exp Biol; 2006 Sep 07; 209(Pt 17):3370-82. PubMed ID: 16916973
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A multitransducer microsystem for insect monitoring and control.
    Lemmerhirt DF, Staudacher EM, Wise KD.
    IEEE Trans Biomed Eng; 2006 Oct 07; 53(10):2084-91. PubMed ID: 17019873
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A dynamic model of thoracic differentiation for the control of turning in the stick insect.
    Rosano H, Webb B.
    Biol Cybern; 2007 Sep 07; 97(3):229-46. PubMed ID: 17647010
    [Abstract] [Full Text] [Related]

  • 19. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A, Schmitt J.
    J Theor Biol; 2009 Feb 07; 256(3):414-27. PubMed ID: 18951907
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.