These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 17766418
1. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. Spaepen S, Versées W, Gocke D, Pohl M, Steyaert J, Vanderleyden J. J Bacteriol; 2007 Nov; 189(21):7626-33. PubMed ID: 17766418 [Abstract] [Full Text] [Related]
2. Organization of the ipdC region regulates IAA levels in different Azospirillum brasilense strains: molecular and functional analysis of ipdC in strain SM. Malhotra M, Srivastava S. Environ Microbiol; 2008 May; 10(5):1365-73. PubMed ID: 18248455 [Abstract] [Full Text] [Related]
3. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Malhotra M, Srivastava S. Antonie Van Leeuwenhoek; 2008 May; 93(4):425-33. PubMed ID: 17952626 [Abstract] [Full Text] [Related]
4. Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J. Mol Plant Microbe Interact; 2005 Apr; 18(4):311-23. PubMed ID: 15828683 [Abstract] [Full Text] [Related]
5. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Costacurta A, Keijers V, Vanderleyden J. Mol Gen Genet; 1994 May 25; 243(4):463-72. PubMed ID: 8202090 [Abstract] [Full Text] [Related]
6. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J. Appl Environ Microbiol; 2005 Apr 25; 71(4):1803-10. PubMed ID: 15812004 [Abstract] [Full Text] [Related]
7. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. Palacios OA, Gomez-Anduro G, Bashan Y, de-Bashan LE. FEMS Microbiol Ecol; 2016 Jun 25; 92(6):fiw077. PubMed ID: 27090758 [Abstract] [Full Text] [Related]
8. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J. J Bacteriol; 1999 Feb 25; 181(4):1338-42. PubMed ID: 9973364 [Abstract] [Full Text] [Related]
9. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. Jijón-Moreno S, Marcos-Jiménez C, Pedraza RO, Ramírez-Mata A, de Salamone IG, Fernández-Scavino A, Vásquez-Hernández CA, Soto-Urzúa L, Baca BE. Antonie Van Leeuwenhoek; 2015 Jun 25; 107(6):1501-17. PubMed ID: 25842039 [Abstract] [Full Text] [Related]
10. Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Carreño-Lopez R, Campos-Reales N, Elmerich C, Baca BE. Mol Gen Genet; 2000 Nov 25; 264(4):521-30. PubMed ID: 11129057 [Abstract] [Full Text] [Related]
11. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Moënne-Loccoz Y. Res Microbiol; 2010 Apr 25; 161(3):219-26. PubMed ID: 20138146 [Abstract] [Full Text] [Related]
12. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S. Microb Ecol; 2011 May 25; 61(4):723-8. PubMed ID: 21340736 [Abstract] [Full Text] [Related]
13. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. Ona O, Van Impe J, Prinsen E, Vanderleyden J. FEMS Microbiol Lett; 2005 May 01; 246(1):125-32. PubMed ID: 15869971 [Abstract] [Full Text] [Related]
14. The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 A resolution. Implications for its catalytic and regulatory mechanism. Versées W, Spaepen S, Vanderleyden J, Steyaert J. FEBS J; 2007 May 01; 274(9):2363-75. PubMed ID: 17403037 [Abstract] [Full Text] [Related]
15. Functional identification and expression of indole-3-pyruvate decarboxylase from Paenibacillus polymyxa E681. Phi QT, Park YM, Ryu CM, Park SH, Ghim SY. J Microbiol Biotechnol; 2008 Jul 01; 18(7):1235-44. PubMed ID: 18667851 [Abstract] [Full Text] [Related]
16. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. Steenhoudt O, Vanderleyden J. FEMS Microbiol Rev; 2000 Oct 01; 24(4):487-506. PubMed ID: 10978548 [Abstract] [Full Text] [Related]
17. Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Zimmer W, Wesche M, Timmermans L. Curr Microbiol; 1998 Jun 01; 36(6):327-31. PubMed ID: 9608743 [Abstract] [Full Text] [Related]
18. Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis in Azospirillum lipoferum FS. Yagi K, Chujo T, Nojiri H, Omori T, Nishiyama M, Yamane H. Biosci Biotechnol Biochem; 2001 May 01; 65(5):1265-9. PubMed ID: 11440156 [Abstract] [Full Text] [Related]
19. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Kochar M, Upadhyay A, Srivastava S. Res Microbiol; 2011 May 01; 162(4):426-35. PubMed ID: 21397014 [Abstract] [Full Text] [Related]
20. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. Ryu RJ, Patten CL. J Bacteriol; 2008 Nov 01; 190(21):7200-8. PubMed ID: 18757531 [Abstract] [Full Text] [Related] Page: [Next] [New Search]