These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 17766418
21. Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Fedorov DN, Doronina NV, Trotsenko YA. Biochemistry (Mosc); 2010 Dec; 75(12):1435-43. PubMed ID: 21314613 [Abstract] [Full Text] [Related]
22. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM. Koul V, Tripathi C, Adholeya A, Kochar M. Res Microbiol; 2015 Apr; 166(3):174-85. PubMed ID: 25700632 [Abstract] [Full Text] [Related]
23. Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7. Kaur S, Mishra MN, Tripathi AK. FEMS Microbiol Lett; 2009 Oct; 299(2):149-58. PubMed ID: 19694814 [Abstract] [Full Text] [Related]
24. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Brandl MT, Lindow SE. Appl Environ Microbiol; 1996 Nov; 62(11):4121-8. PubMed ID: 8900003 [Abstract] [Full Text] [Related]
25. Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Rothballer M, Schmid M, Fekete A, Hartmann A. Environ Microbiol; 2005 Nov; 7(11):1839-46. PubMed ID: 16232298 [Abstract] [Full Text] [Related]
32. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Sergeeva E, Liaimer A, Bergman B. Planta; 2002 Jun; 215(2):229-38. PubMed ID: 12029472 [Abstract] [Full Text] [Related]
33. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Meza B, de-Bashan LE, Hernandez JP, Bashan Y. Res Microbiol; 2015 Jun; 166(5):399-407. PubMed ID: 25797155 [Abstract] [Full Text] [Related]
34. Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene. Rodriguez H, Mendoza A, Cruz MA, Holguin G, Glick BR, Bashan Y. FEMS Microbiol Ecol; 2006 Aug; 57(2):217-25. PubMed ID: 16867140 [Abstract] [Full Text] [Related]
35. Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Elías JM, Guerrero-Molina MF, Martínez-Zamora MG, Díaz-Ricci JC, Pedraza RO. Plant Biol (Stuttg); 2018 May; 20(3):490-496. PubMed ID: 29350442 [Abstract] [Full Text] [Related]
36. Active indole-3-acetic acid biosynthesis by the bacterium Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. Barbosa-Nuñez JA, Palacios OA, de-Bashan LE, Snell-Castro R, Corona-González RI, Choix FJ. J Appl Microbiol; 2022 May; 132(5):3650-3663. PubMed ID: 35233885 [Abstract] [Full Text] [Related]
39. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Patten CL, Glick BR. Can J Microbiol; 2002 Jul; 48(7):635-42. PubMed ID: 12224562 [Abstract] [Full Text] [Related]