These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 17767653
21. Advancing automobile identification and brand discrimination from tyre rubber through Machine learning algorithms for forensic investigations. Kaur N, Sharma A, Sharma V. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar 15; 309():123821. PubMed ID: 38183735 [Abstract] [Full Text] [Related]
22. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators. Niskanen A, Tuononen AJ. Sensors (Basel); 2015 Aug 05; 15(8):19251-63. PubMed ID: 26251914 [Abstract] [Full Text] [Related]
23. Surface characterization of recycled tire rubber to be used in cement paste matrix. Segre N, Monteiro PJ, Sposito G. J Colloid Interface Sci; 2002 Apr 15; 248(2):521-3. PubMed ID: 16290558 [Abstract] [Full Text] [Related]
24. Toxicity of tire debris leachates. Gualtieri M, Andrioletti M, Vismara C, Milani M, Camatini M. Environ Int; 2005 Jul 15; 31(5):723-30. PubMed ID: 15910969 [Abstract] [Full Text] [Related]
25. Rubber friction on road surfaces: Experiment and theory for low sliding speeds. Lorenz B, Oh YR, Nam SK, Jeon SH, Persson BN. J Chem Phys; 2015 May 21; 142(19):194701. PubMed ID: 26001467 [Abstract] [Full Text] [Related]
26. Toxicity assessment of sequential leachates of tire powder using a battery of toxicity tests and toxicity identification evaluations. Wik A, Nilsson E, Källqvist T, Tobiesen A, Dave G. Chemosphere; 2009 Nov 21; 77(7):922-7. PubMed ID: 19758678 [Abstract] [Full Text] [Related]
31. Use of a deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment. Unice KM, Kreider ML, Panko JM. Int J Environ Res Public Health; 2012 Nov 08; 9(11):4033-55. PubMed ID: 23202830 [Abstract] [Full Text] [Related]
32. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor. Xu J, Yu J, He W, Huang J, Xu J, Li G. Sci Total Environ; 2021 Jun 10; 772():145507. PubMed ID: 33770869 [Abstract] [Full Text] [Related]
33. Occurrence and effects of tire wear particles in the environment--a critical review and an initial risk assessment. Wik A, Dave G. Environ Pollut; 2009 Jan 10; 157(1):1-11. PubMed ID: 18990476 [Abstract] [Full Text] [Related]
34. Monitoring road surfaces by close proximity noise of the tire/road interaction. Paje SE, Bueno M, Terán F, Viñuela U. J Acoust Soc Am; 2007 Nov 10; 122(5):2636-41. PubMed ID: 18189555 [Abstract] [Full Text] [Related]
35. A Strain-Based Method to Detect Tires' Loss of Grip and Estimate Lateral Friction Coefficient from Experimental Data by Fuzzy Logic for Intelligent Tire Development. Yunta J, Garcia-Pozuelo D, Diaz V, Olatunbosun O. Sensors (Basel); 2018 Feb 06; 18(2):. PubMed ID: 29415513 [Abstract] [Full Text] [Related]
36. A hierarchical estimator development for estimation of tire-road friction coefficient. Zhang X, Göhlich D. PLoS One; 2017 Feb 06; 12(2):e0171085. PubMed ID: 28178332 [Abstract] [Full Text] [Related]
39. Analysis of the Scenarios of Use of an Innovative Technology for the Fast and Nondestructive Characterization of Viscoelastic Materials in the Tires Field. Farroni F, Timpone F, Genovese A. Sensors (Basel); 2024 Feb 09; 24(4):. PubMed ID: 38400293 [Abstract] [Full Text] [Related]
40. System for measuring the coordinates of tire surfaces in transient conditions when rolling over obstacles: description of the system and performance analysis. Castellini P, Di Giuseppe A. Rev Sci Instrum; 2008 Jun 09; 79(6):065105. PubMed ID: 18601435 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]