These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
303 related items for PubMed ID: 17768097
41. Flow perfusion culture of human fetal bone cells in large beta-tricalcium phosphate scaffold with controlled architecture. Wang L, Hu YY, Wang Z, Li X, Li DC, Lu BH, Xu SF. J Biomed Mater Res A; 2009 Oct; 91(1):102-13. PubMed ID: 18767058 [Abstract] [Full Text] [Related]
42. Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. Martins A, Chung S, Pedro AJ, Sousa RA, Marques AP, Reis RL, Neves NM. J Tissue Eng Regen Med; 2009 Jan; 3(1):37-42. PubMed ID: 19021239 [Abstract] [Full Text] [Related]
43. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A, Moreno-Vicente C, Ramos V, Aranaz I, Sanz Casado JV, López-Lacomba JL. Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [Abstract] [Full Text] [Related]
44. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. Horii A, Wang X, Gelain F, Zhang S. PLoS One; 2007 Feb 07; 2(2):e190. PubMed ID: 17285144 [Abstract] [Full Text] [Related]
45. Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds. Pati F, Kalita H, Adhikari B, Dhara S. J Biomed Mater Res A; 2013 Sep 07; 101(9):2526-37. PubMed ID: 23359556 [Abstract] [Full Text] [Related]
46. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Wutticharoenmongkol P, Pavasant P, Supaphol P. Biomacromolecules; 2007 Aug 07; 8(8):2602-10. PubMed ID: 17655356 [Abstract] [Full Text] [Related]
47. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, Kim GS, Somerman MJ, Ma PX. Biomaterials; 2007 Jan 07; 28(2):335-43. PubMed ID: 16854461 [Abstract] [Full Text] [Related]
48. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration. Gao C, Gao Q, Li Y, Rahaman MN, Teramoto A, Abe K. J Biomed Mater Res A; 2012 May 07; 100(5):1324-34. PubMed ID: 22374712 [Abstract] [Full Text] [Related]
49. Growth and differentiation of alveolar bone cells in tissue-engineered constructs and monolayer cultures. Malicev E, Marolt D, Kregar Velikonja N, Kreft ME, Drobnic M, Rode M. Biotechnol Bioeng; 2008 Jul 01; 100(4):773-81. PubMed ID: 18496876 [Abstract] [Full Text] [Related]
50. Study of osteoblastic cells in a microfluidic environment. Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C. Biomaterials; 2006 Feb 01; 27(4):586-95. PubMed ID: 16026825 [Abstract] [Full Text] [Related]
51. Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro. Knabe C, Houshmand A, Berger G, Ducheyne P, Gildenhaar R, Kranz I, Stiller M. J Biomed Mater Res A; 2008 Mar 15; 84(4):856-68. PubMed ID: 17635025 [Abstract] [Full Text] [Related]
52. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Arpornmaeklong P, Suwatwirote N, Pripatnanont P, Oungbho K. Int J Oral Maxillofac Surg; 2007 Apr 15; 36(4):328-37. PubMed ID: 17223012 [Abstract] [Full Text] [Related]
53. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance. Chen Q, Garcia RP, Munoz J, Pérez de Larraya U, Garmendia N, Yao Q, Boccaccini AR. ACS Appl Mater Interfaces; 2015 Nov 11; 7(44):24715-25. PubMed ID: 26460819 [Abstract] [Full Text] [Related]
54. Bone engineering-vitalisation of alloplastic and allogenic bone grafts by human osteoblast-like cells. Hinze MC, Wiedmann-Al-Ahmad M, Glaum R, Gutwald R, Schmelzeisen R, Sauerbier S. Br J Oral Maxillofac Surg; 2010 Jul 11; 48(5):369-73. PubMed ID: 19596502 [Abstract] [Full Text] [Related]
55. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. Shimizu K, Ito A, Honda H. J Biosci Bioeng; 2007 Sep 11; 104(3):171-7. PubMed ID: 17964479 [Abstract] [Full Text] [Related]
56. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Colloids Surf B Biointerfaces; 2009 Nov 01; 74(1):159-66. PubMed ID: 19679453 [Abstract] [Full Text] [Related]
57. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V. Biomaterials; 2009 Jul 01; 30(21):3551-9. PubMed ID: 19361857 [Abstract] [Full Text] [Related]
58. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. Lode A, Bernhardt A, Gelinsky M. J Tissue Eng Regen Med; 2008 Oct 01; 2(7):400-7. PubMed ID: 18756590 [Abstract] [Full Text] [Related]
59. Segmental bone tissue engineering by seeding osteoblast precursor cells into titanium mesh-coral composite scaffolds. Chen F, Feng X, Wu W, Ouyang H, Gao Z, Cheng X, Hou R, Mao T. Int J Oral Maxillofac Surg; 2007 Sep 01; 36(9):822-7. PubMed ID: 17804199 [Abstract] [Full Text] [Related]
60. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Jones JR, Tsigkou O, Coates EE, Stevens MM, Polak JM, Hench LL. Biomaterials; 2007 Mar 01; 28(9):1653-63. PubMed ID: 17175022 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]