These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages. Namatame I, Tomoda H, Ishibashi S, Omura S. Proc Natl Acad Sci U S A; 2004 Jan 20; 101(3):737-42. PubMed ID: 14718664 [Abstract] [Full Text] [Related]
3. Synthesis and biological evaluation of a beauveriolide analogue library. Nagai K, Doi T, Sekiguchi T, Namatame I, Sunazuka T, Tomoda H, Omura S, Takahashi T. J Comb Chem; 2006 Jan 20; 8(1):103-9. PubMed ID: 16398560 [Abstract] [Full Text] [Related]
8. Potential therapeutics for obesity and atherosclerosis: inhibitors of neutral lipid metabolism from microorganisms. Tomoda H, Omura S. Pharmacol Ther; 2007 Sep 20; 115(3):375-89. PubMed ID: 17614133 [Abstract] [Full Text] [Related]
9. New verticilides, inhibitors of acyl-CoA:cholesterol acyltransferase, produced by Verticillium sp. FKI-2679. Ohshiro T, Matsuda D, Kazuhiro T, Uchida R, Nonaka K, Masuma R, Tomoda H. J Antibiot (Tokyo); 2012 May 20; 65(5):255-62. PubMed ID: 22415459 [Abstract] [Full Text] [Related]
10. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Yang L, Yang JB, Chen J, Yu GY, Zhou P, Lei L, Wang ZZ, Cy Chang C, Yang XY, Chang TY, Li BL. Cell Res; 2004 Aug 20; 14(4):315-23. PubMed ID: 15353128 [Abstract] [Full Text] [Related]
11. ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia. Rudel LL, Lee RG, Parini P. Arterioscler Thromb Vasc Biol; 2005 Jun 20; 25(6):1112-8. PubMed ID: 15831806 [Abstract] [Full Text] [Related]
13. Inhibition of acyl-CoA cholesterol acyltransferase by F12511 (Eflucimibe): could it be a new antiatherosclerotic therapeutic? López-Farré AJ, Sacristán D, Zamorano-León JJ, San-Martín N, Macaya C. Cardiovasc Ther; 2008 Jun 20; 26(1):65-74. PubMed ID: 18466422 [Abstract] [Full Text] [Related]
16. Importance of acyl-coenzyme A:cholesterol acyltransferase 1/2 dual inhibition for anti-atherosclerotic potency of pactimibe. Kitayama K, Tanimoto T, Koga T, Terasaka N, Fujioka T, Inaba T. Eur J Pharmacol; 2006 Jul 01; 540(1-3):121-30. PubMed ID: 16730694 [Abstract] [Full Text] [Related]
17. Direct effect of an acyl-CoA:cholesterol acyltransferase inhibitor, F-1394, on atherosclerosis in apolipoprotein E and low density lipoprotein receptor double knockout mice. Chiwata T, Aragane K, Fujinami K, Kojima K, Ishibashi S, Yamada N, Kusunoki J. Br J Pharmacol; 2001 Aug 01; 133(7):1005-12. PubMed ID: 11487509 [Abstract] [Full Text] [Related]
18. Isoform-specific inhibitors of ACATs: recent advances and promising developments. Ohshiro T, Tomoda H. Future Med Chem; 2011 Dec 01; 3(16):2039-61. PubMed ID: 22098352 [Abstract] [Full Text] [Related]
19. Selective inhibition of acyl-CoA:cholesterol acyltransferase 2 isozyme by flavasperone and sterigmatocystin from Aspergillus species. Sakai K, Ohte S, Ohshiro T, Matsuda D, Masuma R, Rudel LL, Tomoda H. J Antibiot (Tokyo); 2008 Sep 01; 61(9):568-72. PubMed ID: 19160525 [Abstract] [Full Text] [Related]
20. Expression levels of ACAT1 and ACAT2 genes in the liver and intestine of baboons with high and low lipemic responses to dietary lipids. Kushwaha RS, Rosillo A, Rodriguez R, McGill HC. J Nutr Biochem; 2005 Dec 01; 16(12):714-21. PubMed ID: 16081263 [Abstract] [Full Text] [Related] Page: [Next] [New Search]