These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 17812226

  • 1. Water sources for subduction zone volcanism: new experimental constraints.
    Pawley AR, Holloway JR.
    Science; 1993 Apr 30; 260(5108):664-7. PubMed ID: 17812226
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust.
    Zhang J, Green HW, Bozhilov K, Jin Z.
    Nature; 2004 Apr 08; 428(6983):633-6. PubMed ID: 15071590
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Seismic evidence for deep-water transportation in the mantle.
    Kawakatsu H, Watada S.
    Science; 2007 Jun 08; 316(5830):1468-71. PubMed ID: 17556582
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Fluid processes in subduction zones.
    Peacock SM.
    Science; 1990 Apr 20; 248(4953):329-37. PubMed ID: 17784486
    [Abstract] [Full Text] [Related]

  • 9. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.
    Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Wöerner G, Volynets ON.
    Nature; 2001 Jan 25; 409(6819):500-4. PubMed ID: 11206543
    [Abstract] [Full Text] [Related]

  • 10. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data.
    Cai C, Wiens DA, Shen W, Eimer M.
    Nature; 2018 Nov 25; 563(7731):389-392. PubMed ID: 30429549
    [Abstract] [Full Text] [Related]

  • 11. Intraplate volcanism originating from upwelling hydrous mantle transition zone.
    Yang J, Faccenda M.
    Nature; 2020 Mar 25; 579(7797):88-91. PubMed ID: 32103183
    [Abstract] [Full Text] [Related]

  • 12. Serpentine stability to mantle depths and subduction-related magmatism.
    Ulmer P, Trommsdorff V.
    Science; 1995 May 12; 268(5212):858-61. PubMed ID: 17792181
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.
    Calvert AJ.
    Nature; 2004 Mar 11; 428(6979):163-7. PubMed ID: 15014496
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Highly oxidising fluids generated during serpentinite breakdown in subduction zones.
    Debret B, Sverjensky DA.
    Sci Rep; 2017 Sep 04; 7(1):10351. PubMed ID: 28871200
    [Abstract] [Full Text] [Related]

  • 19. Carbonate-rich crust subduction drives the deep carbon and chlorine cycles.
    Chen C, Förster MW, Foley SF, Shcheka SS.
    Nature; 2023 Aug 04; 620(7974):576-581. PubMed ID: 37558874
    [Abstract] [Full Text] [Related]

  • 20. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration.
    Wei SS, Wiens DA, van Keken PE, Cai C.
    Sci Adv; 2017 Jan 04; 3(1):e1601755. PubMed ID: 28097220
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.