These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 17845707

  • 1. Quantitative analysis of surface micro-roughness alterations in human spermatozoa using atomic force microscopy.
    Kumar S, Chaudhury K, Sen P, Guha SK.
    J Microsc; 2007 Aug; 227(Pt 2):118-23. PubMed ID: 17845707
    [Abstract] [Full Text] [Related]

  • 2. Topological alterations in human spermatozoa associated with the polyelectrolytic effect of RISUG.
    Kumar S, Chaudhury K, Sen P, Guha SK.
    Micron; 2006 Aug; 37(6):526-32. PubMed ID: 16504524
    [Abstract] [Full Text] [Related]

  • 3. Study of the micro-structural properties of RISUG--a newly developed male contraceptive.
    Kumar S, Roy S, Chaudhury K, Sen P, Guha SK.
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):154-61. PubMed ID: 18161821
    [Abstract] [Full Text] [Related]

  • 4. RISUG (reversible inhibition of sperm under guidance)--an antimicrobial as male vas deferens implant for HIV free semen.
    Guha SK.
    Med Hypotheses; 2005 Jul; 65(1):61-4. PubMed ID: 15893119
    [Abstract] [Full Text] [Related]

  • 5. Biophysical mechanism-mediated time-dependent effect on sperm of human and monkey vas implanted polyelectrolyte contraceptive.
    Guha SK.
    Asian J Androl; 2007 Mar; 9(2):221-7. PubMed ID: 17334590
    [Abstract] [Full Text] [Related]

  • 6. Polyelectrolyte polymer properties in relation to male contraceptive RISUG action.
    Roy S, Ghosh D, Guha SK.
    Colloids Surf B Biointerfaces; 2009 Feb 15; 69(1):77-84. PubMed ID: 19111447
    [Abstract] [Full Text] [Related]

  • 7. Studies on the membrane integrity of human sperm treated with a new injectable male contraceptive.
    Chaudhury K, Bhattacharyya AK, Guha SK.
    Hum Reprod; 2004 Aug 15; 19(8):1826-30. PubMed ID: 15192063
    [Abstract] [Full Text] [Related]

  • 8. Biomaterials for orthopedics: a roughness analysis by atomic force microscopy.
    Covani U, Giacomelli L, Krajewski A, Ravaglioli A, Spotorno L, Loria P, Das S, Nicolini C.
    J Biomed Mater Res A; 2007 Sep 01; 82(3):723-30. PubMed ID: 17326227
    [Abstract] [Full Text] [Related]

  • 9. Correlation between Enterococcus faecalis biofilms development stage and quantitative surface roughness using atomic force microscopy.
    Santos RP, Arruda TT, Carvalho CB, Carneiro VA, Braga LQ, Teixeira EH, Arruda FV, Cavada BS, Havt A, de Oliveira TM, Bezerra GA, Freire VN.
    Microsc Microanal; 2008 Apr 01; 14(2):150-8. PubMed ID: 18312720
    [Abstract] [Full Text] [Related]

  • 10. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S, Bryant R, Doerr SH, Rhodri Williams P, Wright CJ.
    J Microsc; 2008 Sep 01; 231(3):384-94. PubMed ID: 18754993
    [Abstract] [Full Text] [Related]

  • 11. Relative suitability of DMSO and NaHCO3 for reversal of RISUG® induced long-term contraception.
    Ansari AS, Hussain M, Khan SR, Lohiya NK.
    Andrology; 2016 Mar 01; 4(2):306-13. PubMed ID: 26748683
    [Abstract] [Full Text] [Related]

  • 12. Highlights on ultrastructural pathology of human sperm.
    Joshi NV, Cruz I, Osuna JA.
    Methods Mol Biol; 2011 Mar 01; 736():259-84. PubMed ID: 21660733
    [Abstract] [Full Text] [Related]

  • 13. Phase imaging atomic force microscopy in the characterization of biomaterials.
    Ye Z, Zhao X.
    J Microsc; 2010 Apr 01; 238(1):27-35. PubMed ID: 20384835
    [Abstract] [Full Text] [Related]

  • 14. The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness.
    Girasole M, Pompeo G, Cricenti A, Longo G, Boumis G, Bellelli A, Amiconi S.
    Nanomedicine; 2010 Dec 01; 6(6):760-8. PubMed ID: 20603227
    [Abstract] [Full Text] [Related]

  • 15. High-resolution noncontact atomic force microscopy.
    Pérez R, García R, Schwarz U.
    Nanotechnology; 2009 Jul 01; 20(26):260201. PubMed ID: 19531843
    [Abstract] [Full Text] [Related]

  • 16. Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode with an atomic force microscope.
    Chen N, Bhushan B.
    J Microsc; 2005 Nov 01; 220(Pt 2):96-112. PubMed ID: 16313489
    [Abstract] [Full Text] [Related]

  • 17. Multiple autoclave cycles affect the surface of rotary nickel-titanium files: an atomic force microscopy study.
    Valois CR, Silva LP, Azevedo RB.
    J Endod; 2008 Jul 01; 34(7):859-62. PubMed ID: 18570996
    [Abstract] [Full Text] [Related]

  • 18. Atomic force microscopy analysis of enveloped and non-enveloped viral entry into, and egress from, cultured cells.
    Moloney M, McDonnell L, O'Shea H.
    Ultramicroscopy; 2004 Aug 01; 100(3-4):163-9. PubMed ID: 15231306
    [Abstract] [Full Text] [Related]

  • 19. Scanning white-light interferometry as a novel technique to quantify the surface roughness of micron-sized particles for inhalation.
    Adi S, Adi H, Chan HK, Young PM, Traini D, Yang R, Yu A.
    Langmuir; 2008 Oct 07; 24(19):11307-12. PubMed ID: 18759384
    [Abstract] [Full Text] [Related]

  • 20. Unraveling the role of the rssC gene of Serratia marcescens by atomic force microscopy.
    Sheu BC, Lin CC, Fu YH, Lee SY, Lai HC, Wu RS, Liu CH, Tsai JC, Lin S.
    Microsc Microanal; 2010 Dec 07; 16(6):755-63. PubMed ID: 20961481
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.