These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


416 related items for PubMed ID: 17849388

  • 21. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L, Liu H.
    J Comput Chem; 2002 Nov 30; 23(15):1404-15. PubMed ID: 12370943
    [Abstract] [Full Text] [Related]

  • 22. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S, Artese A, Ceccherini-Silberstein F, Ortuso F, Perno CF, Sing T, Svicher V.
    J Chem Inf Model; 2009 Jul 30; 49(7):1751-61. PubMed ID: 19537723
    [Abstract] [Full Text] [Related]

  • 23. Continuum solvation models in the linear interaction energy method.
    Carlsson J, Andér M, Nervall M, Aqvist J.
    J Phys Chem B; 2006 Jun 22; 110(24):12034-41. PubMed ID: 16800513
    [Abstract] [Full Text] [Related]

  • 24. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations.
    Bartels C, Widmer A, Ehrhardt C.
    J Comput Chem; 2005 Sep 22; 26(12):1294-305. PubMed ID: 15981257
    [Abstract] [Full Text] [Related]

  • 25. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG.
    Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019
    [Abstract] [Full Text] [Related]

  • 26. Molecular dynamic and free energy studies of primary resistance mutations in HIV-1 protease-ritonavir complexes.
    Aruksakunwong O, Wolschann P, Hannongbua S, Sompornpisut P.
    J Chem Inf Model; 2006 Dec 01; 46(5):2085-92. PubMed ID: 16995739
    [Abstract] [Full Text] [Related]

  • 27. Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead.
    Perez MA, Fernandes PA, Ramos MJ.
    J Mol Graph Model; 2007 Oct 01; 26(3):634-42. PubMed ID: 17459746
    [Abstract] [Full Text] [Related]

  • 28. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V, Michielin O, Karplus M.
    J Mol Biol; 2002 Jan 04; 315(1):21-52. PubMed ID: 11771964
    [Abstract] [Full Text] [Related]

  • 29. Interpretation of the binding affinities of PTP1B inhibitors with the MM-GB/SA method and the X-score scoring function.
    Zhang X, Li X, Wang R.
    J Chem Inf Model; 2009 Apr 04; 49(4):1033-48. PubMed ID: 19320460
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy.
    Wang YX, Freedberg DI, Grzesiek S, Torchia DA, Wingfield PT, Kaufman JD, Stahl SJ, Chang CH, Hodge CN.
    Biochemistry; 1996 Oct 01; 35(39):12694-704. PubMed ID: 8841113
    [Abstract] [Full Text] [Related]

  • 33. Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches.
    Srivastava HK, Sastry GN.
    J Chem Inf Model; 2012 Nov 26; 52(11):3088-98. PubMed ID: 23121465
    [Abstract] [Full Text] [Related]

  • 34. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease.
    Oehme DP, Brownlee RT, Wilson DJ.
    J Comput Chem; 2012 Dec 15; 33(32):2566-80. PubMed ID: 22915442
    [Abstract] [Full Text] [Related]

  • 35. An approach to rapid estimation of relative binding affinities of enzyme inhibitors: application to peptidomimetic inhibitors of the human immunodeficiency virus type 1 protease.
    Viswanadhan VN, Reddy MR, Wlodawer A, Varney MD, Weinstein JN.
    J Med Chem; 1996 Feb 02; 39(3):705-12. PubMed ID: 8576913
    [Abstract] [Full Text] [Related]

  • 36. Computational titration analysis of a multiprotic HIV-1 protease-ligand complex.
    Spyrakis F, Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE.
    J Am Chem Soc; 2004 Sep 29; 126(38):11764-5. PubMed ID: 15382890
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation.
    Kolár M, Fanfrlík J, Hobza P.
    J Phys Chem B; 2011 Apr 28; 115(16):4718-24. PubMed ID: 21466174
    [Abstract] [Full Text] [Related]

  • 39. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM, Degliesposti G, Sgobba M, Rastelli G.
    Bioorg Med Chem; 2007 Dec 15; 15(24):7865-77. PubMed ID: 17870536
    [Abstract] [Full Text] [Related]

  • 40. X-ray structure and conformational dynamics of the HIV-1 protease in complex with the inhibitor SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics simulations.
    Ringhofer S, Kallen J, Dutzler R, Billich A, Visser AJ, Scholz D, Steinhauser O, Schreiber H, Auer M, Kungl AJ.
    J Mol Biol; 1999 Mar 05; 286(4):1147-59. PubMed ID: 10047488
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.