These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 17868269
1. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking. Burnfield JM, Powers CM. J Forensic Sci; 2007 Nov; 52(6):1328-33. PubMed ID: 17868269 [Abstract] [Full Text] [Related]
2. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking. Tsai YJ, Powers CM. Gait Posture; 2009 Oct; 30(3):303-6. PubMed ID: 19553123 [Abstract] [Full Text] [Related]
3. Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance. Burnfield JM, Powers CM. Ergonomics; 2006 Aug 15; 49(10):982-95. PubMed ID: 16803728 [Abstract] [Full Text] [Related]
4. Comparison of utilized coefficient of friction during different walking tasks in persons with and without a disability. Burnfield JM, Tsai YJ, Powers CM. Gait Posture; 2005 Aug 15; 22(1):82-8. PubMed ID: 15996597 [Abstract] [Full Text] [Related]
5. Utilized coefficient of friction during walking: static estimates exceed measured values. Powers CM, Burnfield JM, Lim P, Brault JM, Flynn JE. J Forensic Sci; 2002 Nov 15; 47(6):1303-8. PubMed ID: 12455654 [Abstract] [Full Text] [Related]
6. The influence of heel height on utilized coefficient of friction during walking. Blanchette MG, Brault JR, Powers CM. Gait Posture; 2011 May 15; 34(1):107-10. PubMed ID: 21536444 [Abstract] [Full Text] [Related]
7. Biomechanics of slips. Redfern MS, Cham R, Gielo-Perczak K, Grönqvist R, Hirvonen M, Lanshammar H, Marpet M, Pai CY, Powers C. Ergonomics; 2001 Oct 20; 44(13):1138-66. PubMed ID: 11794762 [Abstract] [Full Text] [Related]
8. Predicting slips and falls considering required and available friction. Hanson JP, Redfern MS, Mazumdar M. Ergonomics; 1999 Dec 20; 42(12):1619-33. PubMed ID: 10643404 [Abstract] [Full Text] [Related]
9. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking. Yamaguchi T, Yano M, Onodera H, Hokkirigawa K. Gait Posture; 2013 Jun 20; 38(2):209-14. PubMed ID: 23218767 [Abstract] [Full Text] [Related]
10. The anatomy of a slip: Kinetic and kinematic characteristics of slip and non-slip matched trials. McGorry RW, DiDomenico A, Chang CC. Appl Ergon; 2010 Jan 20; 41(1):41-6. PubMed ID: 19427993 [Abstract] [Full Text] [Related]
11. Motor patterns during walking on a slippery walkway. Cappellini G, Ivanenko YP, Dominici N, Poppele RE, Lacquaniti F. J Neurophysiol; 2010 Feb 20; 103(2):746-60. PubMed ID: 19955283 [Abstract] [Full Text] [Related]
12. A methodology to quantify the stochastic distribution of friction coefficient required for level walking. Chang WR, Chang CC, Matz S, Lesch MF. Appl Ergon; 2008 Nov 20; 39(6):766-71. PubMed ID: 18187104 [Abstract] [Full Text] [Related]
13. Adaptations to normal human gait on potentially slippery surfaces: the effects of awareness and prior slip experience. Heiden TL, Sanderson DJ, Inglis JT, Siegmund GP. Gait Posture; 2006 Oct 20; 24(2):237-46. PubMed ID: 16221549 [Abstract] [Full Text] [Related]
14. Step length and required friction in walking. Cooper RC, Prebeau-Menezes LM, Butcher MT, Bertram JE. Gait Posture; 2008 May 20; 27(4):547-51. PubMed ID: 17703942 [Abstract] [Full Text] [Related]
15. The use of a heel-mounted accelerometer as an adjunct measure of slip distance. McGorry RW, DiDomenico A, Chang CC. Appl Ergon; 2007 May 20; 38(3):369-76. PubMed ID: 16806040 [Abstract] [Full Text] [Related]
16. Slipping of the foot on the floor when pulling a pallet truck. Li KW, Chang CC, Chang WR. Appl Ergon; 2008 Nov 20; 39(6):812-9. PubMed ID: 18222414 [Abstract] [Full Text] [Related]
17. Proprioception, gait kinematics, and rate of loading during walking: are they related? Riskowski JL, Mikesky AE, Bahamonde RE, Alvey TV, Burr DB. J Musculoskelet Neuronal Interact; 2005 Nov 20; 5(4):379-87. PubMed ID: 16340143 [Abstract] [Full Text] [Related]
18. Slipping, sliding and stability: locomotor strategies for overcoming low-friction surfaces. Clark AJ, Higham TE. J Exp Biol; 2011 Apr 15; 214(Pt 8):1369-78. PubMed ID: 21430214 [Abstract] [Full Text] [Related]
19. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Fong DT, Mao DW, Li JX, Hong Y. J Biomech; 2008 Apr 15; 41(4):838-44. PubMed ID: 18068710 [Abstract] [Full Text] [Related]
20. The influence of footwear sole hardness on slip initiation in young adults. Tsai YJ, Powers CM. J Forensic Sci; 2008 Jul 15; 53(4):884-8. PubMed ID: 18482376 [Abstract] [Full Text] [Related] Page: [Next] [New Search]