These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
326 related items for PubMed ID: 17873419
1. Functional consequences of model complexity in rhythmic systems: I. Systematic reduction of a bursting neuron model. Sorensen ME, DeWeerth SP. J Neural Eng; 2007 Sep; 4(3):179-88. PubMed ID: 17873419 [Abstract] [Full Text] [Related]
2. Functional consequences of model complexity in rhythmic systems: II. Systems performance of model and hybrid oscillators. Sorensen ME, DeWeerth SP. J Neural Eng; 2007 Sep; 4(3):189-96. PubMed ID: 17873420 [Abstract] [Full Text] [Related]
3. Two-dimensional variation of bursting properties in a silicon-neuron half-center oscillator. Simoni MF, DeWeerth SP. IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):281-9. PubMed ID: 17009487 [Abstract] [Full Text] [Related]
4. Mapped clock oscillators as ring devices and their application to neuronal electrical rhythms. Zalay OC, Bardakjian BL. IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):233-44. PubMed ID: 18586602 [Abstract] [Full Text] [Related]
5. Adaptive targeting of chaotic response in periodically stimulated neural systems. Gupta K, Singh HP, Biswal B, Ramaswamy R. Chaos; 2006 Jun; 16(2):023116. PubMed ID: 16822019 [Abstract] [Full Text] [Related]
6. A network of electronic neural oscillators reproduces the dynamics of the periodically forced pyloric pacemaker group. Denker M, Szücs A, Pinto RD, Abarbanel HD, Selverston AI. IEEE Trans Biomed Eng; 2005 May; 52(5):792-8. PubMed ID: 15887528 [Abstract] [Full Text] [Related]
7. A synaptic input portal for a mapped clock oscillator model of neuronal electrical rhythmic activity. Zariffa J, Ebden M, Bardakjian BL. J Neural Eng; 2004 Sep; 1(3):158-64. PubMed ID: 15876635 [Abstract] [Full Text] [Related]
8. Chaotic frequency scaling in a coupled oscillator model for free rhythmic actions. Raftery A, Cusumano J, Sternad D. Neural Comput; 2008 Jan; 20(1):205-26. PubMed ID: 18045006 [Abstract] [Full Text] [Related]
9. Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling. Bondarenko VE, Cymbalyuk GS, Patel G, Deweerth SP, Calabrese RL. Chaos; 2004 Dec; 14(4):995-1003. PubMed ID: 15568913 [Abstract] [Full Text] [Related]
10. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Storace M, Linaro D, de Lange E. Chaos; 2008 Sep; 18(3):033128. PubMed ID: 19045466 [Abstract] [Full Text] [Related]
11. In phase and antiphase synchronization of coupled homoclinic chaotic oscillators. Leyva I, Allaria E, Boccaletti S, Arecchi FT. Chaos; 2004 Mar; 14(1):118-22. PubMed ID: 15003051 [Abstract] [Full Text] [Related]
12. A simulation method for the firing sequences of motor units. Jiang N, Englehart KB, Parker PA. J Electromyogr Kinesiol; 2007 Oct; 17(5):527-34. PubMed ID: 16973380 [Abstract] [Full Text] [Related]
13. Comparison of single neuron models in terms of synchronization propensity. Sungar N, Allaria E, Leyva I, Arecchi FT. Chaos; 2008 Sep; 18(3):033108. PubMed ID: 19045446 [Abstract] [Full Text] [Related]
14. Frequency-selective response of FitzHugh-Nagumo neuron networks via changing random edges. Zhao G, Hou Z, Xin H. Chaos; 2006 Dec; 16(4):043107. PubMed ID: 17199385 [Abstract] [Full Text] [Related]
15. Revealing direction of coupling between neuronal oscillators from time series: phase dynamics modeling versus partial directed coherence. Smirnov D, Schelter B, Winterhalder M, Timmer J. Chaos; 2007 Mar; 17(1):013111. PubMed ID: 17411247 [Abstract] [Full Text] [Related]