These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
335 related items for PubMed ID: 17882322
1. The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities. Zmijewski MA, Skórko-Glonek J, Tanfani F, Banecki B, Kotlarz A, Macario AJ, Lipińska B. Acta Biochim Pol; 2007; 54(3):509-22. PubMed ID: 17882322 [Abstract] [Full Text] [Related]
2. Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria. Zmijewski MA, Skórko-Glonek J, Tanfani F, Banecki B, Kotlarz A, Macario AJ, Lipińska B. Acta Biochim Pol; 2007; 54(2):245-52. PubMed ID: 17565388 [Abstract] [Full Text] [Related]
3. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rüdiger S, Schönfeld HJ, Schirra C, Bujard H, Bukau B. EMBO J; 1996 Feb 01; 15(3):607-17. PubMed ID: 8599944 [Abstract] [Full Text] [Related]
4. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK. Grimshaw JP, Siegenthaler RK, Züger S, Schönfeld HJ, Z'graggen BR, Christen P. J Mol Biol; 2005 Nov 04; 353(4):888-96. PubMed ID: 16198374 [Abstract] [Full Text] [Related]
5. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. Mol Cell; 2008 Nov 07; 32(3):347-58. PubMed ID: 18995833 [Abstract] [Full Text] [Related]
6. Structural dynamics of the DnaK-peptide complex. Popp S, Packschies L, Radzwill N, Vogel KP, Steinhoff HJ, Reinstein J. J Mol Biol; 2005 Apr 15; 347(5):1039-52. PubMed ID: 15784262 [Abstract] [Full Text] [Related]
7. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli. Kedzierska S, Chesnokova LS, Witt SN, Zolkiewski M. Arch Biochem Biophys; 2005 Dec 01; 444(1):61-5. PubMed ID: 16289019 [Abstract] [Full Text] [Related]
8. Interdomain communication in the molecular chaperone DnaK. Han W, Christen P. Biochem J; 2003 Feb 01; 369(Pt 3):627-34. PubMed ID: 12383055 [Abstract] [Full Text] [Related]
9. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. Zmijewski MA, Macario AJ, Lipińska B. J Mol Biol; 2004 Feb 13; 336(2):539-49. PubMed ID: 14757064 [Abstract] [Full Text] [Related]
10. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. Mayer MP, Laufen T, Paal K, McCarty JS, Bukau B. J Mol Biol; 1999 Jun 18; 289(4):1131-44. PubMed ID: 10369787 [Abstract] [Full Text] [Related]
11. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ. Biochemistry; 2003 May 06; 42(17):4937-44. PubMed ID: 12718535 [Abstract] [Full Text] [Related]
12. GrpE accelerates peptide binding and release from the high affinity state of DnaK. Mally A, Witt SN. Nat Struct Biol; 2001 Mar 06; 8(3):254-7. PubMed ID: 11224572 [Abstract] [Full Text] [Related]
13. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system. Klostermeier D, Seidel R, Reinstein J. J Mol Biol; 1999 Apr 02; 287(3):511-25. PubMed ID: 10092456 [Abstract] [Full Text] [Related]
14. Structural insights into substrate binding by the molecular chaperone DnaK. Pellecchia M, Montgomery DL, Stevens SY, Vander Kooi CW, Feng HP, Gierasch LM, Zuiderweg ER. Nat Struct Biol; 2000 Apr 02; 7(4):298-303. PubMed ID: 10742174 [Abstract] [Full Text] [Related]
15. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates. Russell R, Wali Karzai A, Mehl AF, McMacken R. Biochemistry; 1999 Mar 30; 38(13):4165-76. PubMed ID: 10194333 [Abstract] [Full Text] [Related]
16. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Zmijewski MA, Kwiatkowska JM, Lipińska B. Arch Microbiol; 2004 Dec 30; 182(6):436-49. PubMed ID: 15448982 [Abstract] [Full Text] [Related]
17. The second step of ATP binding to DnaK induces peptide release. Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J. J Mol Biol; 1996 Nov 15; 263(5):657-70. PubMed ID: 8947566 [Abstract] [Full Text] [Related]
18. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain. Moro F, Fernández-Sáiz V, Muga A. Protein Sci; 2006 Feb 15; 15(2):223-33. PubMed ID: 16384998 [Abstract] [Full Text] [Related]
19. Kinetic evidence for peptide-induced oligomerization of the molecular chaperone DnaK at heat shock temperatures. Farr CD, Witt SN. Biochemistry; 1997 Sep 02; 36(35):10793-800. PubMed ID: 9271511 [Abstract] [Full Text] [Related]