These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


509 related items for PubMed ID: 17883397

  • 1. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells.
    Pérez-Alvarez A, Albillos A.
    J Neurochem; 2007 Dec; 103(6):2281-90. PubMed ID: 17883397
    [Abstract] [Full Text] [Related]

  • 2. A two-step model for acetylcholine control of exocytosis via nicotinic receptors.
    Arnáiz-Cot JJ, de Diego AM, Hernández-Guijo JM, Gandía L, García AG.
    Biochem Biophys Res Commun; 2008 Jan 18; 365(3):413-9. PubMed ID: 17981151
    [Abstract] [Full Text] [Related]

  • 3. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L, Chan SA, Smith C.
    Neuroscience; 2006 Dec 01; 143(2):445-59. PubMed ID: 16962713
    [Abstract] [Full Text] [Related]

  • 4. Calcium gradients and exocytosis in bovine adrenal chromaffin cells.
    Marengo FD.
    Cell Calcium; 2005 Aug 01; 38(2):87-99. PubMed ID: 16076487
    [Abstract] [Full Text] [Related]

  • 5. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla.
    de Diego AM, Gandía L, García AG.
    Acta Physiol (Oxf); 2008 Feb 01; 192(2):287-301. PubMed ID: 18005392
    [Abstract] [Full Text] [Related]

  • 6. Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis.
    Lerner I, Trus M, Cohen R, Yizhar O, Nussinovitch I, Atlas D.
    J Neurochem; 2006 Apr 01; 97(1):116-27. PubMed ID: 16515555
    [Abstract] [Full Text] [Related]

  • 7. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY, Park HG, Miwa S.
    Auton Neurosci; 2006 Jul 30; 128(1-2):37-47. PubMed ID: 16461015
    [Abstract] [Full Text] [Related]

  • 8. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells.
    Akaike A, Mine Y, Sasa M, Takaori S.
    J Pharmacol Exp Ther; 1990 Oct 30; 255(1):333-9. PubMed ID: 2213564
    [Abstract] [Full Text] [Related]

  • 9. Ca2+ flux and signaling implications by nicotinic acetylcholine receptors in rat medial habenula.
    Guo X, Lester RA.
    J Neurophysiol; 2007 Jan 30; 97(1):83-92. PubMed ID: 17050826
    [Abstract] [Full Text] [Related]

  • 10. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
    Dzhura EV, He W, Currie KP.
    J Pharmacol Exp Ther; 2006 Mar 30; 316(3):1165-74. PubMed ID: 16280412
    [Abstract] [Full Text] [Related]

  • 11. Influence of lobeline on catecholamine release from the isolated perfused rat adrenal gland.
    Lim DY, Kim YS, Miwa S.
    Auton Neurosci; 2004 Jan 30; 110(1):27-35. PubMed ID: 14766322
    [Abstract] [Full Text] [Related]

  • 12. Blockade of nicotinic receptors of bovine adrenal chromaffin cells by nanomolar concentrations of atropine.
    González-Rubio JM, García de Diego AM, Egea J, Olivares R, Rojo J, Gandía L, García AG, Hernández-Guijo JM.
    Eur J Pharmacol; 2006 Mar 27; 535(1-3):13-24. PubMed ID: 16530180
    [Abstract] [Full Text] [Related]

  • 13. Ceramide modulates nicotinic receptor-dependent Ca(2+) signaling in rat chromaffin cells.
    Liu J, Jorgensen MS, Adams JM, Titlow WB, Nikolova-Karakashian M, Jackson BA.
    J Neurosci Res; 2001 Nov 15; 66(4):559-64. PubMed ID: 11746375
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Progesterone regulation of catecholamine secretion from chromaffin cells.
    Armstrong SM, Stuenkel EL.
    Brain Res; 2005 May 10; 1043(1-2):76-86. PubMed ID: 15862520
    [Abstract] [Full Text] [Related]

  • 16. Amperometric study of the kinetics of exocytosis in mouse adrenal slice chromaffin cells: physiological and methodological insights.
    Arroyo G, Fuentealba J, Sevane-Fernández N, Aldea M, García AG, Albillos A.
    J Neurophysiol; 2006 Sep 10; 96(3):1196-202. PubMed ID: 16723417
    [Abstract] [Full Text] [Related]

  • 17. Acetylcholine-induced calcium signalling in adrenaline- and noradrenaline-containing adrenal chromaffin cells.
    Zaika OL, Pochynyuk OM, Kostyuk PG, Yavorskaya EN, Lukyanetz EA.
    Arch Biochem Biophys; 2004 Apr 01; 424(1):23-32. PubMed ID: 15019833
    [Abstract] [Full Text] [Related]

  • 18. Pharmacological characterization of native α7 nicotinic ACh receptors and their contribution to depolarization-elicited exocytosis in human chromaffin cells.
    Pérez-Alvarez A, Hernández-Vivanco A, Alonso Y Gregorio S, Tabernero A, McIntosh JM, Albillos A.
    Br J Pharmacol; 2012 Feb 01; 165(4):908-21. PubMed ID: 21790533
    [Abstract] [Full Text] [Related]

  • 19. Different secretory vesicles can be involved in depolarization-evoked exocytosis.
    Lukyanetz EA.
    Biochem Biophys Res Commun; 2001 Nov 09; 288(4):844-8. PubMed ID: 11688985
    [Abstract] [Full Text] [Related]

  • 20. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores.
    Zerbes M, Clark CL, Powis DA.
    Cell Calcium; 2001 Jan 09; 29(1):49-58. PubMed ID: 11133355
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.