These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
289 related items for PubMed ID: 17884405
1. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM, Burr DB. Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405 [Abstract] [Full Text] [Related]
2. Bisphosphonates do not alter the rate of secondary mineralization. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB. Bone; 2011 Oct; 49(4):701-5. PubMed ID: 21619951 [Abstract] [Full Text] [Related]
4. Examination of bone chemical composition in osteoporosis using fluorescence-assisted synchrotron infrared microspectroscopy. Miller LM, Tibrewala J, Carlson CS. Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1035-44. PubMed ID: 10976861 [Abstract] [Full Text] [Related]
5. Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bala Y, Farlay D, Delmas PD, Meunier PJ, Boivin G. Bone; 2010 Apr; 46(4):1204-12. PubMed ID: 19969115 [Abstract] [Full Text] [Related]
13. Infrared microscopic imaging of bone: spatial distribution of CO3(2-). Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R. J Bone Miner Res; 2001 May; 16(5):893-900. PubMed ID: 11341334 [Abstract] [Full Text] [Related]
14. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Turunen MJ, Saarakkala S, Rieppo L, Helminen HJ, Jurvelin JS, Isaksson H. Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980 [Abstract] [Full Text] [Related]
15. In situ examination of osteoblast biomineralization on sulfonated polystyrene-modified substrates using Fourier transform infrared microspectroscopy. Meng Y, Faillace ME, Dorst K, Palmaccio SJ, Miller LM, Qin YX. Biointerphases; 2017 Jul 10; 12(3):031001. PubMed ID: 28693327 [Abstract] [Full Text] [Related]
16. Cluster analysis of infrared spectra of rabbit cortical bone samples during maturation and growth. Kobrina Y, Turunen MJ, Saarakkala S, Jurvelin JS, Hauta-Kasari M, Isaksson H. Analyst; 2010 Dec 10; 135(12):3147-55. PubMed ID: 21038039 [Abstract] [Full Text] [Related]
17. Structural studies of the mineral phase of calcifying cartilage. Rey C, Beshah K, Griffin R, Glimcher MJ. J Bone Miner Res; 1991 May 10; 6(5):515-25. PubMed ID: 2068959 [Abstract] [Full Text] [Related]
18. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G. Bone; 1998 Sep 10; 23(3):187-96. PubMed ID: 9737340 [Abstract] [Full Text] [Related]
19. FTIR microspectroscopic analysis of human osteonal bone. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL. Calcif Tissue Int; 1996 Dec 10; 59(6):480-7. PubMed ID: 8939775 [Abstract] [Full Text] [Related]
20. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy. Aydin HM, Hu B, Suso JS, El Haj A, Yang Y. Analyst; 2011 Feb 21; 136(4):775-80. PubMed ID: 21152629 [Abstract] [Full Text] [Related] Page: [Next] [New Search]