These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 17886239
1. The chakragati mouse: a mouse model for rapid in vivo screening of antipsychotic drug candidates. Dawe GS, Ratty AK. Biotechnol J; 2007 Nov; 2(11):1344-52. PubMed ID: 17886239 [Abstract] [Full Text] [Related]
2. Antipsychotic drugs dose-dependently suppress the spontaneous hyperactivity of the chakragati mouse. Dawe GS, Nagarajah R, Albert R, Casey DE, Gross KW, Ratty AK. Neuroscience; 2010 Nov 24; 171(1):162-72. PubMed ID: 20816926 [Abstract] [Full Text] [Related]
3. The chakragati mouse shows deficits in prepulse inhibition of acoustic startle and latent inhibition. Verma V, Tan CH, Ong WY, Grigoryan GA, Jones CA, Stolzberg D, Salvi R, Gross KW, Ratty AK, Dawe GS. Neurosci Res; 2008 Mar 24; 60(3):281-8. PubMed ID: 18164085 [Abstract] [Full Text] [Related]
4. Preliminary evidence for reduced social interactions in Chakragati mutants modeling certain symptoms of schizophrenia. Torres G, Meeder BA, Hallas BH, Gross KW, Horowitz JM. Brain Res; 2005 Jun 07; 1046(1-2):180-6. PubMed ID: 15882844 [Abstract] [Full Text] [Related]
5. A neurobehavioral screening of the ckr mouse mutant: implications for an animal model of schizophrenia. Torres G, Hallas BH, Vernace VA, Jones C, Gross KW, Horowitz JM. Brain Res Bull; 2004 Jan 15; 62(4):315-26. PubMed ID: 14709346 [Abstract] [Full Text] [Related]
6. Ventricular size mapping in a transgenic model of schizophrenia. Torres G, Meeder BA, Hallas BH, Spernyak JA, Mazurchuk R, Jones C, Gross KW, Horowitz JM. Brain Res Dev Brain Res; 2005 Jan 01; 154(1):35-44. PubMed ID: 15617753 [Abstract] [Full Text] [Related]
7. Specificity of behavioral and neurochemical dysfunction in the chakragati mouse: a novel genetic model of a movement disorder. Fitzgerald LW, Ratty AK, Teitler M, Gross KW, Glick SD. Brain Res; 1993 Apr 16; 608(2):247-58. PubMed ID: 8495359 [Abstract] [Full Text] [Related]
8. [Evaluation of antipsychotic and relative drugs using disruption of prepulse inhibition as an animal model for schizophrenia]. Suemaru K, Kohnomi S, Umeda K, Araki H. Nihon Shinkei Seishin Yakurigaku Zasshi; 2008 Jun 16; 28(3):121-6. PubMed ID: 18646597 [Abstract] [Full Text] [Related]
9. Cognitive impairment in schizophrenia: a review of developmental and genetic models, and pro-cognitive profile of the optimised D(3) > D(2) antagonist, S33138. Millan MJ, Brocco M. Therapie; 2008 Jun 16; 63(3):187-229. PubMed ID: 18718210 [Abstract] [Full Text] [Related]
10. Antipsychotic drug actions on gene modulation and signaling mechanisms. Molteni R, Calabrese F, Racagni G, Fumagalli F, Riva MA. Pharmacol Ther; 2009 Oct 16; 124(1):74-85. PubMed ID: 19540875 [Abstract] [Full Text] [Related]
11. Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. McOmish CE, Burrows E, Howard M, Scarr E, Kim D, Shin HS, Dean B, van den Buuse M, Hannan AJ. Mol Psychiatry; 2008 Jul 16; 13(7):661-72. PubMed ID: 17667964 [Abstract] [Full Text] [Related]
12. Use of biomarkers in the discovery of novel anti-schizophrenia drugs. Mikkelsen JD, Thomsen MS, Hansen HH, Lichota J. Drug Discov Today; 2010 Feb 16; 15(3-4):137-41. PubMed ID: 20036755 [Abstract] [Full Text] [Related]
13. Targeting information-processing deficit in schizophrenia: a novel approach to psychotherapeutic drug discovery. Hajós M. Trends Pharmacol Sci; 2006 Jul 16; 27(7):391-8. PubMed ID: 16766049 [Abstract] [Full Text] [Related]
14. Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis. Kuroki T, Nagao N, Nakahara T. Prog Brain Res; 2008 Jul 16; 172():199-212. PubMed ID: 18772034 [Abstract] [Full Text] [Related]
15. Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity. Galici R, Boggs JD, Miller KL, Bonaventure P, Atack JR. Behav Pharmacol; 2008 Mar 16; 19(2):153-9. PubMed ID: 18332680 [Abstract] [Full Text] [Related]
16. Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Watanabe Y, Someya T, Nawa H. Psychiatry Clin Neurosci; 2010 Jun 16; 64(3):217-30. PubMed ID: 20602722 [Abstract] [Full Text] [Related]
17. Behavioral animal models of antipsychotic drug actions. Peleg-Raibstein D, Feldon J, Meyer U. Handb Exp Pharmacol; 2012 Jun 16; (212):361-406. PubMed ID: 23129339 [Abstract] [Full Text] [Related]
18. Commentary: genome-based CNS drug discovery: D-amino acid oxidase (DAAO) as a novel target for antipsychotic medications: progress and challenges. Williams M. Biochem Pharmacol; 2009 Dec 01; 78(11):1360-5. PubMed ID: 19591808 [Abstract] [Full Text] [Related]
19. Messing up with traffic: different effects of antipsychotic agents on glutamate receptor complexes in vivo. Del'guidice T, Beaulieu JM. Mol Pharmacol; 2008 May 01; 73(5):1339-42. PubMed ID: 18314495 [Abstract] [Full Text] [Related]
20. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior. Butini S, Gemma S, Campiani G, Franceschini S, Trotta F, Borriello M, Ceres N, Ros S, Coccone SS, Bernetti M, De Angelis M, Brindisi M, Nacci V, Fiorini I, Novellino E, Cagnotto A, Mennini T, Sandager-Nielsen K, Andreasen JT, Scheel-Kruger J, Mikkelsen JD, Fattorusso C. J Med Chem; 2009 Jan 08; 52(1):151-69. PubMed ID: 19072656 [Abstract] [Full Text] [Related] Page: [Next] [New Search]