These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2401 related items for PubMed ID: 17893670

  • 1. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 2. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP.
    Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090
    [Abstract] [Full Text] [Related]

  • 3. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP, Srivastava K.
    Mol Vis; 2003 Apr 16; 9():110-8. PubMed ID: 12707643
    [Abstract] [Full Text] [Related]

  • 4. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K, Chaves JM, Srivastava OP, Kirk M.
    Exp Eye Res; 2008 Oct 16; 87(4):356-66. PubMed ID: 18662688
    [Abstract] [Full Text] [Related]

  • 5. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W, Calvin HI, David LL, Wu K, McCormack AL, Zhu GP, Fu SC.
    Exp Eye Res; 2002 Sep 16; 75(3):335-46. PubMed ID: 12384096
    [Abstract] [Full Text] [Related]

  • 6. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L, Liu D, Liu P, Yu Y.
    Mol Vis; 2011 Sep 16; 17():3423-36. PubMed ID: 22219638
    [Abstract] [Full Text] [Related]

  • 7. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP, Srivastava K.
    Mol Vis; 2003 Dec 08; 9():644-56. PubMed ID: 14685148
    [Abstract] [Full Text] [Related]

  • 8. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S, Liu P, Zhang H, Li Z, Song Z, Zhang L, Chen S.
    Invest Ophthalmol Vis Sci; 2011 Jun 13; 52(7):4182-91. PubMed ID: 21436267
    [Abstract] [Full Text] [Related]

  • 9. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N, Awakura M, Takemoto L, Inomata M, Takata T, Fujii N, Saito T.
    Mol Vis; 2003 Jul 07; 9():315-22. PubMed ID: 12847419
    [Abstract] [Full Text] [Related]

  • 10. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH.
    Invest Ophthalmol Vis Sci; 2001 May 07; 42(6):1299-304. PubMed ID: 11328743
    [Abstract] [Full Text] [Related]

  • 11. Characterization of covalent multimers of crystallins in aging human lenses.
    Srivastava OP, Kirk MC, Srivastava K.
    J Biol Chem; 2004 Mar 19; 279(12):10901-9. PubMed ID: 14623886
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage.
    Hanson SR, Hasan A, Smith DL, Smith JB.
    Exp Eye Res; 2000 Aug 19; 71(2):195-207. PubMed ID: 10930324
    [Abstract] [Full Text] [Related]

  • 14. Identification of the primary targets of carbamylation in bovine lens proteins by mass spectrometry.
    Zhang J, Yan H, Harding JJ, Liu ZX, Wang X, Ruan YS.
    Curr Eye Res; 2008 Nov 19; 33(11):963-76. PubMed ID: 19085379
    [Abstract] [Full Text] [Related]

  • 15. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z, David LL, Smith DL, Smith JB.
    Exp Eye Res; 2001 Aug 19; 73(2):203-11. PubMed ID: 11446770
    [Abstract] [Full Text] [Related]

  • 16. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y, Bi H, Li N, Jin H, Yang P, Kong X, Yan S, Lu Y.
    Mol Vis; 2010 Jun 11; 16():1068-75. PubMed ID: 20596256
    [Abstract] [Full Text] [Related]

  • 17. Age-related degradation of betaA3/A1-crystallin in human lenses.
    Srivastava OP, Srivastava K, Harrington V.
    Biochem Biophys Res Commun; 1999 May 19; 258(3):632-8. PubMed ID: 10329436
    [Abstract] [Full Text] [Related]

  • 18. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L, Zhao WC, Yin XL, Ge JY, Bu ZG, Ge HY, Meng QF, Liu P.
    Mol Biosyst; 2012 Mar 19; 8(3):888-901. PubMed ID: 22269969
    [Abstract] [Full Text] [Related]

  • 19. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ, David LL, Riviere MA, Wilmarth PA, Muir MS, Morton JD.
    Invest Ophthalmol Vis Sci; 2008 Mar 19; 49(3):1016-22. PubMed ID: 18326725
    [Abstract] [Full Text] [Related]

  • 20. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses.
    Srivastava OP, Srivastava K, Chaves JM.
    Mol Vis; 2008 Mar 19; 14():1872-85. PubMed ID: 18949065
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 121.