These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 17895383

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. The third intracellular loop of the rat gonadotropin-releasing hormone receptor couples the receptor to Gs- and G(q/11)-mediated signal transduction pathways: evidence from loop fragment transfection in GGH3 cells.
    Ulloa-Aguirre A, Stanislaus D, Arora V, Väänänen J, Brothers S, Janovick JA, Conn PM.
    Endocrinology; 1998 May; 139(5):2472-8. PubMed ID: 9564860
    [Abstract] [Full Text] [Related]

  • 43. Potentiation of adenosine A1 receptor-mediated inositol phospholipid hydrolysis by tyrosine kinase inhibitors in CHO cells.
    Dickenson JM, Hill SJ.
    Br J Pharmacol; 1998 Nov; 125(5):1049-57. PubMed ID: 9846644
    [Abstract] [Full Text] [Related]

  • 44. Defining signal transduction by inositol phosphates.
    Shears SB, Ganapathi SB, Gokhale NA, Schenk TM, Wang H, Weaver JD, Zaremba A, Zhou Y.
    Subcell Biochem; 2012 Nov; 59():389-412. PubMed ID: 22374098
    [Abstract] [Full Text] [Related]

  • 45. Altered expression of G(q/11alpha) protein shapes mGlu1 and mGlu5 receptor-mediated single cell inositol 1,4,5-trisphosphate and Ca(2+) signaling.
    Atkinson PJ, Young KW, Ennion SJ, Kew JN, Nahorski SR, Challiss RA.
    Mol Pharmacol; 2006 Jan; 69(1):174-84. PubMed ID: 16234485
    [Abstract] [Full Text] [Related]

  • 46. Ins(1,4,5)P3 metabolism and the family of IP3-3Kinases.
    Pattni K, Banting G.
    Cell Signal; 2004 Jun; 16(6):643-54. PubMed ID: 15093605
    [Abstract] [Full Text] [Related]

  • 47. Down-regulation of inositol 1,4,5-trisphosphate receptor in cells stably expressing the constitutively active angiotensin II N111G-AT(1) receptor.
    Auger-Messier M, Arguin G, Chaloux B, Leduc R, Escher E, Guillemette G.
    Mol Endocrinol; 2004 Dec; 18(12):2967-80. PubMed ID: 15331757
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Metabolic Labeling of Inositol Phosphates and Phosphatidylinositols in Yeast and Mammalian Cells.
    Hale AT, Clarke BP, York JD.
    Methods Mol Biol; 2020 Dec; 2091():83-92. PubMed ID: 31773572
    [Abstract] [Full Text] [Related]

  • 57. How inositol pyrophosphates control cellular phosphate homeostasis?
    Saiardi A.
    Adv Biol Regul; 2012 May; 52(2):351-9. PubMed ID: 22781748
    [Abstract] [Full Text] [Related]

  • 58. IPMK: A versatile regulator of nuclear signaling events.
    Kim E, Beon J, Lee S, Park J, Kim S.
    Adv Biol Regul; 2016 May; 61():25-32. PubMed ID: 26682649
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. PH domains--a universal membrane adapter.
    Hemmings BA.
    Science; 1997 Mar 28; 275(5308):1899. PubMed ID: 9122692
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.