These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
826 related items for PubMed ID: 17896180
1. Temperature distribution effects on micro-CFPCR performance. Chen PC, Nikitopoulos DE, Soper SA, Murphy MC. Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180 [Abstract] [Full Text] [Related]
2. Rapid PCR in a continuous flow device. Hashimoto M, Chen PC, Mitchell MW, Nikitopoulos DE, Soper SA, Murphy MC. Lab Chip; 2004 Dec; 4(6):638-45. PubMed ID: 15570378 [Abstract] [Full Text] [Related]
3. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lee DS, Park SH, Yang H, Chung KH, Yoon TH, Kim SJ, Kim K, Kim YT. Lab Chip; 2004 Aug; 4(4):401-7. PubMed ID: 15269812 [Abstract] [Full Text] [Related]
4. Continuous-flow thermal gradient PCR. Crews N, Wittwer C, Gale B. Biomed Microdevices; 2008 Apr; 10(2):187-95. PubMed ID: 17874300 [Abstract] [Full Text] [Related]
5. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor. Chen PC, Park DS, You BH, Kim N, Park T, Soper SA, Nikitopoulos DE, Murphy MC. Sens Actuators B Chem; 2010 Aug 06; 149(1):291-300. PubMed ID: 20871807 [Abstract] [Full Text] [Related]
6. Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate. Chen J, Wabuyele M, Chen H, Patterson D, Hupert M, Shadpour H, Nikitopoulos D, Soper SA. Anal Chem; 2005 Jan 15; 77(2):658-66. PubMed ID: 15649068 [Abstract] [Full Text] [Related]
7. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient. Cheng JY, Hsieh CJ, Chuang YC, Hsieh JR. Analyst; 2005 Jun 15; 130(6):931-40. PubMed ID: 15912243 [Abstract] [Full Text] [Related]
8. Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification. Zhang C, Xing D. Biomed Microdevices; 2010 Feb 15; 12(1):1-12. PubMed ID: 19757072 [Abstract] [Full Text] [Related]
9. Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device. Zhang C, Xing D. Anal Biochem; 2009 Apr 01; 387(1):102-12. PubMed ID: 19454245 [Abstract] [Full Text] [Related]
13. Integrated continuous flow polymerase chain reaction and micro-capillary electrophoresis system with bioaffinity preconcentration. Njoroge SK, Witek MA, Battle KN, Immethun VE, Hupert ML, Soper SA. Electrophoresis; 2011 Nov 01; 32(22):3221-32. PubMed ID: 22038569 [Abstract] [Full Text] [Related]
14. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. Matsubara Y, Kerman K, Kobayashi M, Yamamura S, Morita Y, Tamiya E. Biosens Bioelectron; 2005 Feb 15; 20(8):1482-90. PubMed ID: 15626601 [Abstract] [Full Text] [Related]
18. Simply and reliably integrating micro heaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system. Zhong R, Pan X, Jiang L, Dai Z, Qin J, Lin B. Electrophoresis; 2009 Apr 15; 30(8):1297-305. PubMed ID: 19319907 [Abstract] [Full Text] [Related]
19. Neuro-genetic optimization of temperature control for a continuous flow polymerase chain reaction microdevice. Lee HW, Arunasalam P, Laratta WP, Seetharamu KN, Azid IA. J Biomech Eng; 2007 Aug 15; 129(4):540-7. PubMed ID: 17655475 [Abstract] [Full Text] [Related]
20. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler. Xiang Q, Xu B, Fu R, Li D. Biomed Microdevices; 2005 Dec 15; 7(4):273-9. PubMed ID: 16404505 [Abstract] [Full Text] [Related] Page: [Next] [New Search]