These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
789 related items for PubMed ID: 17897658
1. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. Gilar M, Neue UD. J Chromatogr A; 2007 Oct 26; 1169(1-2):139-50. PubMed ID: 17897658 [Abstract] [Full Text] [Related]
2. Maximizing peak capacity and separation speed in liquid chromatography. Petersson P, Frank A, Heaton J, Euerby MR. J Sep Sci; 2008 Jul 26; 31(13):2346-57. PubMed ID: 18646261 [Abstract] [Full Text] [Related]
3. A study of the effects of column porosity on gradient separations of proteins. Urban J, Jandera P, Kucerová Z, van Straten MA, Claessens HA. J Chromatogr A; 2007 Oct 05; 1167(1):63-75. PubMed ID: 17804002 [Abstract] [Full Text] [Related]
4. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R, Grimes BA, Machtejevas E, Kudirkaite V, Kornysova O, Hennessy TP, Lubda D, Unger KK. J Chromatogr A; 2007 Mar 09; 1144(1):72-84. PubMed ID: 17084406 [Abstract] [Full Text] [Related]
5. Peak capacity in gradient ultra performance liquid chromatography (UPLC). Wren SA. J Pharm Biomed Anal; 2005 Jun 15; 38(2):337-43. PubMed ID: 15925228 [Abstract] [Full Text] [Related]
6. High peak capacity separations of peptides in reversed-phase gradient elution liquid chromatography on columns packed with porous shell particles. Marchetti N, Guiochon G. J Chromatogr A; 2007 Dec 28; 1176(1-2):206-16. PubMed ID: 18036600 [Abstract] [Full Text] [Related]
7. Effects of inner diameter of monolithic column on separation of proteins in capillary-liquid chromatography. Gu C, Lin L, Chen X, Jia J, Ren J, Fang N. J Chromatogr A; 2007 Nov 02; 1170(1-2):15-22. PubMed ID: 17915238 [Abstract] [Full Text] [Related]
8. Effects of column length, particle size, gradient length and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations. Liu H, Finch JW, Lavallee MJ, Collamati RA, Benevides CC, Gebler JC. J Chromatogr A; 2007 Apr 13; 1147(1):30-6. PubMed ID: 17320886 [Abstract] [Full Text] [Related]
9. Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns. Detobel F, Broeckhoven K, Wellens J, Wouters B, Swart R, Ursem M, Desmet G, Eeltink S. J Chromatogr A; 2010 Apr 30; 1217(18):3085-90. PubMed ID: 20347095 [Abstract] [Full Text] [Related]
10. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P, Kučerová Z, Urban J. J Chromatogr A; 2011 Dec 09; 1218(49):8874-89. PubMed ID: 21742334 [Abstract] [Full Text] [Related]
11. Methacrylate monolithic capillary columns for gradient peptide separations. Pruim P, Ohman M, Huo Y, Schoenmakers PJ, Kok WT. J Chromatogr A; 2008 Oct 24; 1208(1-2):109-15. PubMed ID: 18771770 [Abstract] [Full Text] [Related]
12. Development of dual gradient column in liquid chromatography. Oda T, Kitagawa S, Ohtani H. J Chromatogr A; 2006 Feb 10; 1105(1-2):154-8. PubMed ID: 16185701 [Abstract] [Full Text] [Related]
13. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles. Vaast A, Broeckhoven K, Dolman S, Desmet G, Eeltink S. J Chromatogr A; 2012 Mar 09; 1228():270-5. PubMed ID: 21855077 [Abstract] [Full Text] [Related]
14. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column. Nelson DM, Marcus RK. Anal Chem; 2006 Dec 15; 78(24):8462-71. PubMed ID: 17165840 [Abstract] [Full Text] [Related]
15. Optimizing the peak capacity per unit time in one-dimensional and off-line two-dimensional liquid chromatography for the separation of complex peptide samples. Eeltink S, Dolman S, Swart R, Ursem M, Schoenmakers PJ. J Chromatogr A; 2009 Oct 30; 1216(44):7368-74. PubMed ID: 19285679 [Abstract] [Full Text] [Related]
16. Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions. Ikegami T, Hara T, Kimura H, Kobayashi H, Hosoya K, Cabrera K, Tanaka N. J Chromatogr A; 2006 Feb 17; 1106(1-2):112-7. PubMed ID: 16343520 [Abstract] [Full Text] [Related]
17. Gradient elution separation and peak capacity of columns packed with porous shell particles. Marchetti N, Cavazzini A, Gritti F, Guiochon G. J Chromatogr A; 2007 Sep 07; 1163(1-2):203-11. PubMed ID: 17632112 [Abstract] [Full Text] [Related]
18. Can the theory of gradient liquid chromatography be useful in solving practical problems? Jandera P. J Chromatogr A; 2006 Sep 08; 1126(1-2):195-218. PubMed ID: 16787650 [Abstract] [Full Text] [Related]
19. Characterization of new types of stationary phases for fast liquid chromatographic applications. Fekete S, Fekete J, Ganzler K. J Pharm Biomed Anal; 2009 Dec 05; 50(5):703-9. PubMed ID: 19560301 [Abstract] [Full Text] [Related]
20. Exact peak compression factor in linear gradient elution. I. Theory. Gritti F, Guiochon G. J Chromatogr A; 2008 Nov 28; 1212(1-2):35-40. PubMed ID: 18951548 [Abstract] [Full Text] [Related] Page: [Next] [New Search]