These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 17907821
1. Predictable and unpredictable rewards produce similar changes in dopamine tone. Hernandez G, Haines E, Rajabi H, Stewart J, Arvanitogiannis A, Shizgal P. Behav Neurosci; 2007 Oct; 121(5):887-95. PubMed ID: 17907821 [Abstract] [Full Text] [Related]
2. Dopamine tone increases similarly during predictable and unpredictable administration of rewarding brain stimulation at short inter-train intervals. Hernandez G, Rajabi H, Stewart J, Arvanitogiannis A, Shizgal P. Behav Brain Res; 2008 Mar 17; 188(1):227-32. PubMed ID: 18068824 [Abstract] [Full Text] [Related]
3. Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. Hernandez G, Hamdani S, Rajabi H, Conover K, Stewart J, Arvanitogiannis A, Shizgal P. Behav Neurosci; 2006 Aug 17; 120(4):888-904. PubMed ID: 16893295 [Abstract] [Full Text] [Related]
4. Dynamic changes in dopamine tone during self-stimulation of the ventral tegmental area in rats. Hernández G, Shizgal P. Behav Brain Res; 2009 Mar 02; 198(1):91-7. PubMed ID: 18996152 [Abstract] [Full Text] [Related]
5. Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study. Segovia KN, Correa M, Salamone JD. Neuroscience; 2011 Nov 24; 196():178-88. PubMed ID: 21884757 [Abstract] [Full Text] [Related]
6. Changes in nucleus accumbens dopamine transmission associated with fixed- and variable-time schedule-induced feeding. Richardson NR, Gratton A. Eur J Neurosci; 2008 May 24; 27(10):2714-23. PubMed ID: 18513317 [Abstract] [Full Text] [Related]
7. Increased dopamine and serotonin metabolism in rat nucleus accumbens produced by intracranial self-stimulation of medial forebrain bundle as measured by in vivo microdialysis. Nakahara D, Ozaki N, Miura Y, Miura H, Nagatsu T. Brain Res; 1989 Aug 21; 495(1):178-81. PubMed ID: 2476201 [Abstract] [Full Text] [Related]
8. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat. Fiorino DF, Coury A, Fibiger HC, Phillips AG. Behav Brain Res; 1993 Jun 30; 55(2):131-41. PubMed ID: 7689319 [Abstract] [Full Text] [Related]
9. Systemic tumor necrosis factor-alpha decreases brain stimulation reward and increases metabolites of serotonin and dopamine in the nucleus accumbens of mice. van Heesch F, Prins J, Korte-Bouws GA, Westphal KG, Lemstra S, Olivier B, Kraneveld AD, Korte SM. Behav Brain Res; 2013 Sep 15; 253():191-5. PubMed ID: 23896053 [Abstract] [Full Text] [Related]
10. The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses. Cossette MP, Conover K, Shizgal P. Behav Brain Res; 2016 Jan 15; 297():345-58. PubMed ID: 26477378 [Abstract] [Full Text] [Related]
11. In vivo dialysis and dopamine: dopamine release and self-stimulation behavior. Nakahara D. Jpn J Psychiatry Neurol; 1991 Jun 15; 45(2):522-4. PubMed ID: 1662312 [No Abstract] [Full Text] [Related]
12. Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat. Datla KP, Ahier RG, Young AM, Gray JA, Joseph MH. Eur J Neurosci; 2002 Nov 15; 16(10):1987-93. PubMed ID: 12453062 [Abstract] [Full Text] [Related]
13. Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption. Salamone JD, Cousins MS, McCullough LD, Carriero DL, Berkowitz RJ. Pharmacol Biochem Behav; 1994 Sep 15; 49(1):25-31. PubMed ID: 7816884 [Abstract] [Full Text] [Related]
14. Cannabinoid receptor blockade reduces the opportunity cost at which rats maintain operant performance for rewarding brain stimulation. Trujillo-Pisanty I, Hernandez G, Moreau-Debord I, Cossette MP, Conover K, Cheer JF, Shizgal P. J Neurosci; 2011 Apr 06; 31(14):5426-35. PubMed ID: 21471378 [Abstract] [Full Text] [Related]
15. The role of nucleus accumbens dopamine in responding on a continuous reinforcement operant schedule: a neurochemical and behavioral study. McCullough LD, Cousins MS, Salamone JD. Pharmacol Biochem Behav; 1993 Nov 06; 46(3):581-6. PubMed ID: 8278435 [Abstract] [Full Text] [Related]
16. Dopamine efflux in the nucleus accumbens during within-session extinction, outcome-dependent, and habit-based instrumental responding for food reward. Ahn S, Phillips AG. Psychopharmacology (Berl); 2007 Apr 06; 191(3):641-51. PubMed ID: 16960698 [Abstract] [Full Text] [Related]
17. Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD. Eur J Neurosci; 2005 Mar 06; 21(6):1749-57. PubMed ID: 15845103 [Abstract] [Full Text] [Related]
18. Role of dopamine tone in the pursuit of brain stimulation reward. Hernandez G, Trujillo-Pisanty I, Cossette MP, Conover K, Shizgal P. J Neurosci; 2012 Aug 08; 32(32):11032-41. PubMed ID: 22875936 [Abstract] [Full Text] [Related]
19. Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Naef L, Moquin L, Dal Bo G, Giros B, Gratton A, Walker CD. Neuroscience; 2011 Mar 10; 176():225-36. PubMed ID: 21187125 [Abstract] [Full Text] [Related]
20. Effect of lesions of areas of brain--stimulation reward of one region of brain on operant behaviour for receiving electrical stimulation into sites of another region and on operant behaviour for food reward. Pandhari SR, Desiraju T. Indian J Physiol Pharmacol; 1990 Oct 10; 34(4):235-51. PubMed ID: 2100286 [Abstract] [Full Text] [Related] Page: [Next] [New Search]