These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 17908658

  • 41. MR angiography of internal carotid arteries: breath-hold Gd-enhanced 3D fast imaging with steady-state precession versus unenhanced 2D and 3D time-of-flight techniques.
    Sardanelli F, Zandrino F, Parodi RC, De Caro G.
    J Comput Assist Tomogr; 1999; 23(2):208-15. PubMed ID: 10096327
    [Abstract] [Full Text] [Related]

  • 42. Carotid artery stenosis: accuracy of contrast-enhanced MR angiography for diagnosis.
    Nederkoorn PJ, Elgersma OE, van der Graaf Y, Eikelboom BC, Kappelle LJ, Mali WP.
    Radiology; 2003 Sep; 228(3):677-82. PubMed ID: 12869686
    [Abstract] [Full Text] [Related]

  • 43. Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): A reproducibility study.
    Chen L, Mossa-Basha M, Sun J, Hippe DS, Balu N, Yuan Q, Pimentel K, Hatsukami TS, Hwang JN, Yuan C.
    Magn Reson Imaging; 2019 Apr; 57():293-302. PubMed ID: 30580079
    [Abstract] [Full Text] [Related]

  • 44. [Perioperative evaluation of internal carotid artery stenoses: value of multislab MR angiography].
    Vogl TJ, Kutter RW, Schön K, Juergens M, Hepp W, Balzer JO, Steger W, Felix R.
    Zentralbl Chir; 1996 Apr; 121(12):1023-32. PubMed ID: 9092222
    [Abstract] [Full Text] [Related]

  • 45. Efficacy of cilostazol for intracranial arterial stenosis evaluated by digital subtraction angiography/magnetic resonance angiography.
    Yamada K, Fujimoto Y.
    Adv Ther; 2011 Oct; 28(10):866-78. PubMed ID: 21975925
    [Abstract] [Full Text] [Related]

  • 46. Three-dimensional spin-echo-based black-blood MRA in the detection of vasospasm following subarachnoid hemorrhage.
    Takano K, Hida K, Iwaasa M, Inoue T, Yoshimitsu K.
    J Magn Reson Imaging; 2019 Mar; 49(3):800-807. PubMed ID: 30284331
    [Abstract] [Full Text] [Related]

  • 47. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla.
    Harteveld AA, De Cocker LJ, Dieleman N, van der Kolk AG, Zwanenburg JJ, Robe PA, Luijten PR, Hendrikse J.
    PLoS One; 2015 Mar; 10(3):e0121051. PubMed ID: 25774881
    [Abstract] [Full Text] [Related]

  • 48. Imaging of aortoiliac arterial disease. Duplex ultrasound and MR angiography versus digital subtraction angiography.
    Lundin P, Svensson A, Henriksen E, Jonason T, Forssell C, Bäckbro B, Bodlund M, Ringqvist I.
    Acta Radiol; 2000 Mar; 41(2):125-32. PubMed ID: 10741783
    [Abstract] [Full Text] [Related]

  • 49. MR angiography in carotid stenosis: a comparison of three techniques.
    Scarabino T, Carriero A, Magarelli N, Florio F, Giannatempo GM, Bonomo L, Salvolini U.
    Eur J Radiol; 1998 Sep; 28(2):117-25. PubMed ID: 9788013
    [Abstract] [Full Text] [Related]

  • 50. Gadolinium-enhanced versus time-of-flight magnetic resonance angiography: what is the benefit of contrast enhancement in evaluating carotid stenosis?
    Muhs BE, Gagne P, Wagener J, Baker J, Ortega MR, Adelman MA, Cayne NS, Rockman CB, Maldonado T.
    Ann Vasc Surg; 2005 Nov; 19(6):823-8. PubMed ID: 16200470
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Vertebral artery ostial stenosis: prevalence by digital subtraction angiography, MR angiography, and CT angiography.
    Kumar Dundamadappa S, Cauley K.
    J Neuroimaging; 2013 Jul; 23(3):360-7. PubMed ID: 22251073
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Gadobenate dimeglumine-enhanced MR angiography: Diagnostic performance of four doses for detection and grading of carotid, renal, and aorto-iliac stenoses compared to digital subtraction angiography.
    Schneider G, Ballarati C, Grazioli L, Manfredi R, Thurnher S, Kroencke TJ, Taupitz M, Merlino B, Bonomo L, Shen N, Pirovano G, Kirchin MA, Spinazzi A.
    J Magn Reson Imaging; 2007 Oct; 26(4):1020-32. PubMed ID: 17896354
    [Abstract] [Full Text] [Related]

  • 55. Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography.
    Shahzad R, Younas F.
    J Coll Physicians Surg Pak; 2011 Jun; 21(6):325-9. PubMed ID: 21711985
    [Abstract] [Full Text] [Related]

  • 56. Comparison of contrast-enhanced MR angiography to intraarterial digital subtraction angiography for evaluation of peripheral arterial occlusive disease: results of a phase III multicenter trial.
    Bui BT, Miller S, Mildenberger P, Sam A, Sheng R, Omniscan MRA Investigator Panel.
    J Magn Reson Imaging; 2010 Jun; 31(6):1402-10. PubMed ID: 20512893
    [Abstract] [Full Text] [Related]

  • 57. Diagnostic Performance of MRA for UnrupturedAneurysms at the Distal ICA.
    He G, Wang J, Zhang Y, Li M, Lu H, Cheng Y, Zhu Y.
    Clin Neuroradiol; 2022 Jun; 32(2):507-515. PubMed ID: 35072753
    [Abstract] [Full Text] [Related]

  • 58. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography.
    Chng SM, Petersen ET, Zimine I, Sitoh YY, Lim CC, Golay X.
    Stroke; 2008 Dec; 39(12):3248-54. PubMed ID: 18845805
    [Abstract] [Full Text] [Related]

  • 59. Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography.
    Skutta B, Fürst G, Eilers J, Ferbert A, Kuhn FP.
    AJNR Am J Neuroradiol; 1999 May; 20(5):791-9. PubMed ID: 10369348
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.