These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
347 related items for PubMed ID: 17916112
1. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C. Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112 [Abstract] [Full Text] [Related]
2. Characterization of tomato endo-beta-1,4-glucanase Cel1 protein in fruit during ripening and after fungal infection. Real MD, Company P, García-Agustín P, Bennett AB, González-Bosch C. Planta; 2004 Nov; 220(1):80-6. PubMed ID: 15243740 [Abstract] [Full Text] [Related]
3. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Lashbrook CC, Gonzalez-Bosch C, Bennett AB. Plant Cell; 1994 Oct; 6(10):1485-93. PubMed ID: 7994180 [Abstract] [Full Text] [Related]
4. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions. Finiti I, Leyva MO, López-Cruz J, Calderan Rodrigues B, Vicedo B, Angulo C, Bennett AB, Grant M, García-Agustín P, González-Bosch C. Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138 [Abstract] [Full Text] [Related]
5. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C. J Plant Physiol; 2015 Mar 01; 175():163-73. PubMed ID: 25543862 [Abstract] [Full Text] [Related]
6. Characterization of two divergent endo-beta-1,4-glucanase cDNA clones highly expressed in the nonclimacteric strawberry fruit. Llop-Tous I, Domínguez-Puigjaner E, Palomer X, Vendrell M. Plant Physiol; 1999 Apr 01; 119(4):1415-22. PubMed ID: 10198101 [Abstract] [Full Text] [Related]
7. Differential Expression of Two Endo-1,4-[beta]-Glucanase Genes in Pericarp and Locules of Wild-Type and Mutant Tomato Fruit. Gonzalez-Bosch C, Brummell DA, Bennett AB. Plant Physiol; 1996 Aug 01; 111(4):1313-1319. PubMed ID: 12226364 [Abstract] [Full Text] [Related]
8. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. López-Cruz J, Óscar CS, Emma FC, Pilar GA, Carmen GB. Mol Plant Pathol; 2017 Jan 01; 18(1):16-31. PubMed ID: 26780422 [Abstract] [Full Text] [Related]
9. Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Brummell DA, Hall BD, Bennett AB. Plant Mol Biol; 1999 Jul 01; 40(4):615-22. PubMed ID: 10480385 [Abstract] [Full Text] [Related]
10. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Díaz J, ten Have A, van Kan JA. Plant Physiol; 2002 Jul 01; 129(3):1341-51. PubMed ID: 12114587 [Abstract] [Full Text] [Related]
11. Expression analysis of a ripening-specific, auxin-repressed endo-1, 4-beta-glucanase gene in strawberry. Harpster MH, Brummell DA, Dunsmuir P. Plant Physiol; 1998 Dec 01; 118(4):1307-16. PubMed ID: 9847104 [Abstract] [Full Text] [Related]
12. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL. Plant Physiol; 2009 Jul 01; 150(3):1434-49. PubMed ID: 19465579 [Abstract] [Full Text] [Related]
13. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F. BMC Plant Biol; 2015 Jun 14; 15():143. PubMed ID: 26070456 [Abstract] [Full Text] [Related]
14. Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Vicedo B, Flors V, de la O Leyva M, Finiti I, Kravchuk Z, Real MD, García-Agustín P, González-Bosch C. Mol Plant Microbe Interact; 2009 Nov 14; 22(11):1455-65. PubMed ID: 19810814 [Abstract] [Full Text] [Related]
15. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. Scalschi L, Sanmartín M, Camañes G, Troncho P, Sánchez-Serrano JJ, García-Agustín P, Vicedo B. Plant J; 2015 Jan 14; 81(2):304-15. PubMed ID: 25407262 [Abstract] [Full Text] [Related]
16. β-1,3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition. Pei Y, Xue Q, Zhang Z, Shu P, Deng H, Bouzayen M, Hong Y, Liu M. Plant Physiol; 2023 Aug 03; 192(4):2785-2802. PubMed ID: 37141312 [Abstract] [Full Text] [Related]
17. CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea. Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X. J Agric Food Chem; 2020 May 20; 68(20):5529-5538. PubMed ID: 32372640 [Abstract] [Full Text] [Related]
18. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Campos L, Lisón P, López-Gresa MP, Rodrigo I, Zacarés L, Conejero V, Bellés JM. Mol Plant Microbe Interact; 2014 Oct 20; 27(10):1159-69. PubMed ID: 25014592 [Abstract] [Full Text] [Related]
19. Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility. Perini MA, Sin IN, Villarreal NM, Marina M, Powell AL, Martínez GA, Civello PM. Plant Physiol Biochem; 2017 Apr 20; 113():122-132. PubMed ID: 28196350 [Abstract] [Full Text] [Related]
20. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. Kravchuk Z, Vicedo B, Flors V, Camañes G, González-Bosch C, García-Agustín P. J Plant Physiol; 2011 Mar 01; 168(4):359-66. PubMed ID: 20950893 [Abstract] [Full Text] [Related] Page: [Next] [New Search]