These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1068 related items for PubMed ID: 17916380
1. Initiation of locomotion in lampreys. Dubuc R, Brocard F, Antri M, Fénelon K, Gariépy JF, Smetana R, Ménard A, Le Ray D, Viana Di Prisco G, Pearlstein E, Sirota MG, Derjean D, St-Pierre M, Zielinski B, Auclair F, Veilleux D. Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380 [Abstract] [Full Text] [Related]
2. Chapter 4--supraspinal control of locomotion: the mesencephalic locomotor region. Le Ray D, Juvin L, Ryczko D, Dubuc R. Prog Brain Res; 2011 Jan; 188():51-70. PubMed ID: 21333802 [Abstract] [Full Text] [Related]
3. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. Brocard F, Dubuc R. J Neurophysiol; 2003 Sep; 90(3):1714-27. PubMed ID: 12736238 [Abstract] [Full Text] [Related]
4. Muscarinic modulation of the trigemino-reticular pathway in lampreys. Le Ray D, Brocard F, Dubuc R. J Neurophysiol; 2004 Aug; 92(2):926-38. PubMed ID: 15044522 [Abstract] [Full Text] [Related]
8. Diencephalic projection to reticulospinal neurons involved in the initiation of locomotion in adult lampreys Lampetra fluviatilis. El Manira A, Pombal MA, Grillner S. J Comp Neurol; 1997 Dec 29; 389(4):603-16. PubMed ID: 9421142 [Abstract] [Full Text] [Related]
9. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys. Le Ray D, Brocard F, Bourcier-Lucas C, Auclair F, Lafaille P, Dubuc R. Eur J Neurosci; 2003 Jan 29; 17(1):137-48. PubMed ID: 12534977 [Abstract] [Full Text] [Related]
10. Lateral turns in the Lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns. Fagerstedt P, Orlovsky GN, Deliagina TG, Grillner S, Ullén F. J Neurophysiol; 2001 Nov 29; 86(5):2257-65. PubMed ID: 11698516 [Abstract] [Full Text] [Related]
13. A Brainstem Neural Substrate for Stopping Locomotion. Grätsch S, Auclair F, Demers O, Auguste E, Hanna A, Büschges A, Dubuc R. J Neurosci; 2019 Feb 06; 39(6):1044-1057. PubMed ID: 30541913 [Abstract] [Full Text] [Related]
14. Muscarinic receptor activation elicits sustained, recurring depolarizations in reticulospinal neurons. Smetana RW, Alford S, Dubuc R. J Neurophysiol; 2007 May 06; 97(5):3181-92. PubMed ID: 17344371 [Abstract] [Full Text] [Related]
17. The trigeminal sensory relay to reticulospinal neurones in lampreys. Viana Di Prisco G, Boutin T, Petropoulos D, Brocard F, Dubuc R. Neuroscience; 2005 May 06; 131(2):535-46. PubMed ID: 15708494 [Abstract] [Full Text] [Related]
18. Differential effects of the reticulospinal system on locomotion in lamprey. Wannier T, Deliagina TG, Orlovsky GN, Grillner S. J Neurophysiol; 1998 Jul 06; 80(1):103-12. PubMed ID: 9658032 [Abstract] [Full Text] [Related]
19. Nigral Glutamatergic Neurons Control the Speed of Locomotion. Ryczko D, Grätsch S, Schläger L, Keuyalian A, Boukhatem Z, Garcia C, Auclair F, Büschges A, Dubuc R. J Neurosci; 2017 Oct 04; 37(40):9759-9770. PubMed ID: 28924005 [Abstract] [Full Text] [Related]
20. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys. Bussières N, Dubuc R. Brain Res; 1992 Jun 05; 582(1):147-53. PubMed ID: 1323371 [Abstract] [Full Text] [Related] Page: [Next] [New Search]