These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
534 related items for PubMed ID: 17923148
1. Effects of SOM, surfactant and pH on the sorption-desorption and mobility of prometryne in soils. Cao J, Guo H, Zhu HM, Jiang L, Yang H. Chemosphere; 2008 Feb; 70(11):2127-34. PubMed ID: 17923148 [Abstract] [Full Text] [Related]
2. Mobility of prometryne in soil as affected by dissolved organic matter. Jiang L, Huang J, Liang L, Zheng PY, Yang H. J Agric Food Chem; 2008 Dec 24; 56(24):11933-40. PubMed ID: 19053378 [Abstract] [Full Text] [Related]
3. Effect of size-fractionation dissolved organic matter on the mobility of prometryne in soil. Chen G, Lin C, Chen L, Yang H. Chemosphere; 2010 May 24; 79(11):1046-55. PubMed ID: 20400172 [Abstract] [Full Text] [Related]
4. Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soil-water system. Sánchez-Martín MJ, Rodríguez-Cruz MS, Sánchez-Camazano M. Water Res; 2003 Jul 24; 37(13):3110-7. PubMed ID: 14509697 [Abstract] [Full Text] [Related]
5. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. Sánchez-Martín MJ, Dorado MC, del Hoyo C, Rodríguez-Cruz MS. J Hazard Mater; 2008 Jan 15; 150(1):115-23. PubMed ID: 17532126 [Abstract] [Full Text] [Related]
6. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils. Baskaran S, Kennedy IR. J Environ Sci Health B; 1999 Nov 15; 34(6):943-63. PubMed ID: 10565420 [Abstract] [Full Text] [Related]
9. Adsorption and correlation with their thermodynamic properties of triazine herbicides on soils. Yang WC, Liu WP, Liu HJ, Liu GS. J Environ Sci (China); 2003 Jul 15; 15(4):443-8. PubMed ID: 12974302 [Abstract] [Full Text] [Related]
10. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M, He F, Zhao D, Hao X. Water Res; 2011 Mar 15; 45(7):2401-14. PubMed ID: 21376362 [Abstract] [Full Text] [Related]
12. A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (Triton X-100) onto natural sediments/soils. Zhu L, Yang K, Lou B, Yuan B. Water Res; 2003 Nov 15; 37(19):4792-800. PubMed ID: 14568066 [Abstract] [Full Text] [Related]
15. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils. Liu Y, Xu Z, Wu X, Gui W, Zhu G. J Hazard Mater; 2010 Jun 15; 178(1-3):462-8. PubMed ID: 20153105 [Abstract] [Full Text] [Related]
18. Enhanced desorption of herbicides sorbed on soils by addition of Triton X-100. Rodríguez-Cruz MS, Sánchez-Martín MJ, Sánchez-Camazano M. J Environ Qual; 2004 Jun 15; 33(3):920-9. PubMed ID: 15224928 [Abstract] [Full Text] [Related]
19. Surfactant-enhanced desorption of atrazine and linuron residues as affected by aging of herbicides in soil. Rodriguez-Cruz MS, Sanchez-Martin MJ, Sanchez-Camazano M. Arch Environ Contam Toxicol; 2006 Jan 15; 50(1):128-37. PubMed ID: 16237492 [Abstract] [Full Text] [Related]
20. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. Sun HW, Yan QS. J Hazard Mater; 2007 Jun 01; 144(1-2):164-70. PubMed ID: 17118546 [Abstract] [Full Text] [Related] Page: [Next] [New Search]