These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


485 related items for PubMed ID: 17927136

  • 1. Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid.
    Philip JY, Buchweishaija J, Mkayula LL, Ye L.
    J Agric Food Chem; 2007 Oct 31; 55(22):8870-6. PubMed ID: 17927136
    [Abstract] [Full Text] [Related]

  • 2. Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity.
    Trevisan MT, Pfundstein B, Haubner R, Würtele G, Spiegelhalder B, Bartsch H, Owen RW.
    Food Chem Toxicol; 2006 Feb 31; 44(2):188-97. PubMed ID: 16095792
    [Abstract] [Full Text] [Related]

  • 3. Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide.
    Philip JY, Da Cruz Francisco J, Dey ES, Buchweishaija J, Mkayula LL, Ye L.
    J Agric Food Chem; 2008 Oct 22; 56(20):9350-4. PubMed ID: 18811166
    [Abstract] [Full Text] [Related]

  • 4. Binding site characteristics of 17beta-estradiol imprinted polymers.
    Wei S, Mizaikoff B.
    Biosens Bioelectron; 2007 Sep 30; 23(2):201-9. PubMed ID: 17540554
    [Abstract] [Full Text] [Related]

  • 5. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications.
    Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L.
    Anal Chim Acta; 2007 Feb 12; 584(1):112-21. PubMed ID: 17386593
    [Abstract] [Full Text] [Related]

  • 6. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers.
    Wu X, Goswami K, Shimizu KD.
    J Mol Recognit; 2008 Feb 12; 21(6):410-8. PubMed ID: 18698665
    [Abstract] [Full Text] [Related]

  • 7. Synthesis of caffeic acid and p-hydroxybenzoic acid molecularly imprinted polymers and their application for the selective extraction of polyphenols from olive mill waste waters.
    Michailof C, Manesiotis P, Panayiotou C.
    J Chromatogr A; 2008 Feb 22; 1182(1):25-33. PubMed ID: 18221745
    [Abstract] [Full Text] [Related]

  • 8. Preparation and application of a molecularly imprinted polymer for the determination of trace metolcarb in food matrices by high performance liquid chromatography.
    Qian K, Fang G, He J, Pan M, Wang S.
    J Sep Sci; 2010 Jul 22; 33(14):2079-85. PubMed ID: 20552596
    [Abstract] [Full Text] [Related]

  • 9. Multi-analyte imprinting capability of OMNiMIPs versus traditional molecularly imprinted polymers.
    Meng AC, LeJeune J, Spivak DA.
    J Mol Recognit; 2009 Jul 22; 22(2):121-8. PubMed ID: 19195014
    [Abstract] [Full Text] [Related]

  • 10. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers.
    He JF, Zhu QH, Deng QY.
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug 22; 67(5):1297-305. PubMed ID: 17142092
    [Abstract] [Full Text] [Related]

  • 11. Molecularly imprinted polymers: an analytical tool for the determination of benzimidazole compounds in water samples.
    Cacho C, Turiel E, Pérez-Conde C.
    Talanta; 2009 May 15; 78(3):1029-35. PubMed ID: 19269468
    [Abstract] [Full Text] [Related]

  • 12. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin.
    Li L, He X, Chen L, Zhang Y.
    Chem Asian J; 2009 Feb 02; 4(2):286-93. PubMed ID: 19040251
    [Abstract] [Full Text] [Related]

  • 13. Development of molecularly imprinted polymers for the binding of nitrofurantoin.
    Athikomrattanakul U, Katterle M, Gajovic-Eichelmann N, Scheller FW.
    Biosens Bioelectron; 2009 Sep 15; 25(1):82-7. PubMed ID: 19559593
    [Abstract] [Full Text] [Related]

  • 14. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.
    Yañez F, Chianella I, Piletsky SA, Concheiro A, Alvarez-Lorenzo C.
    Anal Chim Acta; 2010 Feb 05; 659(1-2):178-85. PubMed ID: 20103122
    [Abstract] [Full Text] [Related]

  • 15. Structure and dynamics of monomer-template complexation: an explanation for molecularly imprinted polymer recognition site heterogeneity.
    Karlsson BC, O'Mahony J, Karlsson JG, Bengtsson H, Eriksson LA, Nicholls IA.
    J Am Chem Soc; 2009 Sep 23; 131(37):13297-304. PubMed ID: 19708659
    [Abstract] [Full Text] [Related]

  • 16. [Preparation and spectral characterization of apigenin molecularly imprinted polymer].
    Li LL, Chen XM.
    Yao Xue Xue Bao; 2009 Aug 23; 44(8):868-72. PubMed ID: 20055154
    [Abstract] [Full Text] [Related]

  • 17. Fluorescent imprinted polymer sensors for chiral amines.
    Nguyen TH, Ansell RJ.
    Org Biomol Chem; 2009 Mar 21; 7(6):1211-20. PubMed ID: 19262942
    [Abstract] [Full Text] [Related]

  • 18. Analysis of recognition of fructose by imprinted polymers.
    Rajkumar R, Warsinke A, Möhwald H, Scheller FW, Katterle M.
    Talanta; 2008 Sep 15; 76(5):1119-23. PubMed ID: 18761164
    [Abstract] [Full Text] [Related]

  • 19. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol.
    Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R.
    J Control Release; 2006 Jun 12; 113(1):43-56. PubMed ID: 16713005
    [Abstract] [Full Text] [Related]

  • 20. The syntheses and characterization of molecularly imprinted polymers for the controlled release of bromhexine.
    Azodi-Deilami S, Abdouss M, Javanbakht M.
    Appl Biochem Biotechnol; 2011 May 12; 164(2):133-47. PubMed ID: 21076945
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.