These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
619 related items for PubMed ID: 17929833
1. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases. Hu XV, Chen X, Han KC, Mildvan AS, Liu JO. Biochemistry; 2007 Nov 06; 46(44):12833-43. PubMed ID: 17929833 [Abstract] [Full Text] [Related]
2. A dominant negative mutation in Saccharomyces cerevisiae methionine aminopeptidase-1 affects catalysis and interferes with the function of methionine aminopeptidase-2. Klinkenberg M, Ling C, Chang YH. Arch Biochem Biophys; 1997 Nov 15; 347(2):193-200. PubMed ID: 9367524 [Abstract] [Full Text] [Related]
3. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. D'souza VM, Holz RC. Biochemistry; 1999 Aug 24; 38(34):11079-85. PubMed ID: 10460163 [Abstract] [Full Text] [Related]
4. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW. Biochemistry; 1999 Jun 15; 38(24):7678-88. PubMed ID: 10387007 [Abstract] [Full Text] [Related]
5. Structural basis for the functional differences between type I and type II human methionine aminopeptidases. Addlagatta A, Hu X, Liu JO, Matthews BW. Biochemistry; 2005 Nov 15; 44(45):14741-9. PubMed ID: 16274222 [Abstract] [Full Text] [Related]
6. Two continuous spectrophotometric assays for methionine aminopeptidase. Zhou Y, Guo XC, Yi T, Yoshimoto T, Pei D. Anal Biochem; 2000 Apr 10; 280(1):159-65. PubMed ID: 10805534 [Abstract] [Full Text] [Related]
7. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR, Chen YW, Dekker EE. Arch Biochem Biophys; 1998 Oct 15; 358(2):211-21. PubMed ID: 9784233 [Abstract] [Full Text] [Related]
8. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS, Steffens JJ, Wawrzak Z, Schwartz RS, Lundqvist T, Jordan DB. Biochemistry; 1999 May 11; 38(19):6012-24. PubMed ID: 10320327 [Abstract] [Full Text] [Related]
9. Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis. Graham SC, Lilley PE, Lee M, Schaeffer PM, Kralicek AV, Dixon NE, Guss JM. Biochemistry; 2006 Jan 24; 45(3):964-75. PubMed ID: 16411772 [Abstract] [Full Text] [Related]
10. Molecular cloning, expression and characterization of three distinctive genes encoding methionine aminopeptidases in cyanobacterium Synechocystis sp. strain PCC6803. Atanassova A, Sugita M, Sugiura M, Pajpanova T, Ivanov I. Arch Microbiol; 2003 Sep 24; 180(3):185-93. PubMed ID: 12861438 [Abstract] [Full Text] [Related]
11. Characterization of full length and truncated type I human methionine aminopeptidases expressed from Escherichia coli. Li JY, Chen LL, Cui YM, Luo QL, Gu M, Nan FJ, Ye QZ. Biochemistry; 2004 Jun 22; 43(24):7892-8. PubMed ID: 15196033 [Abstract] [Full Text] [Related]
12. Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli. Copik AJ, Swierczek SI, Lowther WT, D'souza VM, Matthews BW, Holz RC. Biochemistry; 2003 May 27; 42(20):6283-92. PubMed ID: 12755633 [Abstract] [Full Text] [Related]
13. The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae. Chen S, Vetro JA, Chang YH. Arch Biochem Biophys; 2002 Feb 01; 398(1):87-93. PubMed ID: 11811952 [Abstract] [Full Text] [Related]
14. Identification of an SH3-binding motif in a new class of methionine aminopeptidases from Mycobacterium tuberculosis suggests a mode of interaction with the ribosome. Addlagatta A, Quillin ML, Omotoso O, Liu JO, Matthews BW. Biochemistry; 2005 May 17; 44(19):7166-74. PubMed ID: 15882055 [Abstract] [Full Text] [Related]
15. Kinetic and structural effects of mutations of the catalytic amino-terminal proline in 4-oxalocrotonate tautomerase. Czerwinski RM, Johnson WH, Whitman CP. Biochemistry; 1997 Nov 25; 36(47):14551-60. PubMed ID: 9398173 [Abstract] [Full Text] [Related]
16. Metalloform-selective inhibitors of escherichia coli methionine aminopeptidase and X-ray structure of a Mn(II)-form enzyme complexed with an inhibitor. Ye QZ, Xie SX, Huang M, Huang WJ, Lu JP, Ma ZQ. J Am Chem Soc; 2004 Nov 03; 126(43):13940-1. PubMed ID: 15506752 [Abstract] [Full Text] [Related]
17. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo. Vetro JA, Chang YH. J Cell Biochem; 2002 Nov 03; 85(4):678-88. PubMed ID: 11968008 [Abstract] [Full Text] [Related]
18. Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. D'souza VM, Bennett B, Copik AJ, Holz RC. Biochemistry; 2000 Apr 04; 39(13):3817-26. PubMed ID: 10736182 [Abstract] [Full Text] [Related]
19. Elucidation of the function of type 1 human methionine aminopeptidase during cell cycle progression. Hu X, Addlagatta A, Lu J, Matthews BW, Liu JO. Proc Natl Acad Sci U S A; 2006 Nov 28; 103(48):18148-53. PubMed ID: 17114291 [Abstract] [Full Text] [Related]
20. Physiologically relevant metal cofactor for methionine aminopeptidase-2 is manganese. Wang J, Sheppard GS, Lou P, Kawai M, Park C, Egan DA, Schneider A, Bouska J, Lesniewski R, Henkin J. Biochemistry; 2003 May 06; 42(17):5035-42. PubMed ID: 12718546 [Abstract] [Full Text] [Related] Page: [Next] [New Search]