These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 17938774
21. Numerical simulation of left ventricular assist device implantations: comparing the ascending and the descending aorta cannulations. Bonnemain J, Malossi AC, Lesinigo M, Deparis S, Quarteroni A, von Segesser LK. Med Eng Phys; 2013 Oct; 35(10):1465-75. PubMed ID: 23701842 [Abstract] [Full Text] [Related]
22. Computer simulation of coronary flow waveforms during caval occlusion. De Lazzari C, Neglia D, Ferrari G, Bernini F, Micalizzi M, L'Abbate A, Trivella MG. Methods Inf Med; 2009 Oct; 48(2):113-22. PubMed ID: 19283307 [Abstract] [Full Text] [Related]
23. Numerical modeling of hemodynamics with pulsatile impeller pump support. Shi Y, Lawford PV, Hose DR. Ann Biomed Eng; 2010 Aug; 38(8):2621-34. PubMed ID: 20232153 [Abstract] [Full Text] [Related]
24. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility. Ando M, Nishimura T, Takewa Y, Yamazaki K, Kyo S, Ono M, Tsukiya T, Mizuno T, Taenaka Y, Tatsumi E. Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427 [Abstract] [Full Text] [Related]
25. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters. Wu Y. ASAIO J; 2009 Oct; 55(4):335-9. PubMed ID: 19506462 [Abstract] [Full Text] [Related]
26. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control. Fresiello L, Zieliński K, Jacobs S, Di Molfetta A, Pałko KJ, Bernini F, Martin M, Claus P, Ferrari G, Trivella MG, Górczyńska K, Darowski M, Meyns B, Kozarski M. Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988 [Abstract] [Full Text] [Related]
27. Experimental and numeric investigation of Impella pumps as cavopulmonary assistance for a failing Fontan. Haggerty CM, Fynn-Thompson F, McElhinney DB, Valente AM, Saikrishnan N, Del Nido PJ, Yoganathan AP. J Thorac Cardiovasc Surg; 2012 Sep; 144(3):563-9. PubMed ID: 22336753 [Abstract] [Full Text] [Related]
28. Evaluation of left ventricular relaxation in rotary blood pump recipients using the pump flow waveform: a simulation study. Moscato F, Granegger M, Naiyanetr P, Wieselthaler G, Schima H. Artif Organs; 2012 May; 36(5):470-8. PubMed ID: 22171892 [Abstract] [Full Text] [Related]
29. A desk-top computer model of the circulatory system for heart assistance simulation: effect of an LVAD on energetic relationships inside the left ventricle. De Lazzari C, Ferrari G, Mimmo R, Tosti G, Ambrosi D. Med Eng Phys; 1994 Mar; 16(2):97-103. PubMed ID: 8205368 [Abstract] [Full Text] [Related]
30. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. Letsou GV, Pate TD, Gohean JR, Kurusz M, Longoria RG, Kaiser L, Smalling RW. J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799 [Abstract] [Full Text] [Related]
31. Interactive simulator for e-Learning environments: a teaching software for health care professionals. De Lazzari C, Genuini I, Pisanelli DM, D'Ambrosi A, Fedele F. Biomed Eng Online; 2014 Dec 18; 13():172. PubMed ID: 25522902 [Abstract] [Full Text] [Related]
32. Simulation study of the Hemopump as a cardiac assist device. Li X, Bai J, He P. Med Biol Eng Comput; 2002 May 18; 40(3):344-53. PubMed ID: 12195983 [Abstract] [Full Text] [Related]
33. An artificial right ventricle for failing fontan: in vitro and computational study. Lacour-Gayet FG, Lanning CJ, Stoica S, Wang R, Rech BA, Goldberg S, Shandas R. Ann Thorac Surg; 2009 Jul 18; 88(1):170-6. PubMed ID: 19559219 [Abstract] [Full Text] [Related]
34. Derivation of indices of left ventricular contractility in the setting of continuous-flow left ventricular assist device support. Gupta S, Muthiah K, Woldendorp K, Robson D, Jansz P, Hayward CS. Artif Organs; 2014 Dec 18; 38(12):1029-34. PubMed ID: 24660889 [Abstract] [Full Text] [Related]
35. A computer model of the pediatric circulatory system for testing pediatric assist devices. Giridharan GA, Koenig SC, Mitchell M, Gartner M, Pantalos GM. ASAIO J; 2007 Dec 18; 53(1):74-81. PubMed ID: 17237652 [Abstract] [Full Text] [Related]
36. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices. Gregory SD, Stevens MC, Pauls JP, Schummy E, Diab S, Thomson B, Anderson B, Tansley G, Salamonsen R, Fraser JF, Timms D. Artif Organs; 2016 Sep 18; 40(9):894-903. PubMed ID: 26748566 [Abstract] [Full Text] [Related]
37. Evaluation of a pulsatile pediatric ventricular assist device in an acute right heart failure model. Shum-Tim D, Duncan BW, Hraska V, Friehs I, Shin'oka T, Jonas RA. Ann Thorac Surg; 1997 Nov 18; 64(5):1374-80. PubMed ID: 9386707 [Abstract] [Full Text] [Related]
38. Effects of left ventricular support on right ventricular mechanics during experimental right ventricular ischemia. Moon MR, Castro LJ, DeAnda A, Daughters GT, Ingels NB, Miller DC. Circulation; 1994 Nov 18; 90(5 Pt 2):II92-101. PubMed ID: 7955292 [Abstract] [Full Text] [Related]
39. Modelling in the study of interaction of Hemopump device and artificial ventilation. De Lazzari C, Darowski M, Ferrari G, Pisanelli DM, Tosti G. Comput Biol Med; 2006 Nov 18; 36(11):1235-51. PubMed ID: 16202402 [Abstract] [Full Text] [Related]