These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
268 related items for PubMed ID: 17939887
1. Porous silicon as a neural electrode material. Persson J, Danielsen N, Wallman L. J Biomater Sci Polym Ed; 2007; 18(10):1301-8. PubMed ID: 17939887 [Abstract] [Full Text] [Related]
2. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI. J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885 [Abstract] [Full Text] [Related]
3. Influence of polarized bias and porous silicon morphology on the electrical behavior of Au-porous silicon contacts. Zhao Y, Li DS, Xing SX, Yang DR, Jiang MH. J Zhejiang Univ Sci B; 2005 Nov; 6(11):1135-40. PubMed ID: 16252350 [Abstract] [Full Text] [Related]
4. Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano-/microstructured silicon. Ressine A, Vaz-Domínguez C, Fernandez VM, De Lacey AL, Laurell T, Ruzgas T, Shleev S. Biosens Bioelectron; 2010 Jan 15; 25(5):1001-7. PubMed ID: 19833501 [Abstract] [Full Text] [Related]
5. Porous silicon as a potential electrode material in a nerve repair setting: Tissue reactions. Johansson F, Wallman L, Danielsen N, Schouenborg J, Kanje M. Acta Biomater; 2009 Jul 15; 5(6):2230-7. PubMed ID: 19285930 [Abstract] [Full Text] [Related]
6. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT. IEEE Trans Biomed Eng; 2004 Jun 15; 51(6):881-9. PubMed ID: 15188854 [Abstract] [Full Text] [Related]
7. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes. Chae WS, Gough DV, Ham SK, Robinson DB, Braun PV. ACS Appl Mater Interfaces; 2012 Aug 15; 4(8):3973-9. PubMed ID: 22799397 [Abstract] [Full Text] [Related]
8. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Kozai TD, Catt K, Li X, Gugel ZV, Olafsson VT, Vazquez AL, Cui XT. Biomaterials; 2015 Jan 15; 37():25-39. PubMed ID: 25453935 [Abstract] [Full Text] [Related]
9. Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. Luo D, Wu L, Zhi J. ACS Nano; 2009 Aug 25; 3(8):2121-8. PubMed ID: 19621936 [Abstract] [Full Text] [Related]
10. Carbon nanotube yarns for deep brain stimulation electrode. Jiang C, Li L, Hao H. IEEE Trans Neural Syst Rehabil Eng; 2011 Dec 25; 19(6):612-6. PubMed ID: 21859605 [Abstract] [Full Text] [Related]
11. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. Hébert C, Cottance M, Degardin J, Scorsone E, Rousseau L, Lissorgues G, Bergonzo P, Picaud S. Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():77-84. PubMed ID: 27612691 [Abstract] [Full Text] [Related]
12. A 100 electrode intracortical array: structural variability. Campbell PK, Jones KE, Normann RA. Biomed Sci Instrum; 1990 Dec 01; 26():161-5. PubMed ID: 2334761 [Abstract] [Full Text] [Related]
13. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons. Saha R, Muthuswamy J. Biomed Microdevices; 2007 Jun 01; 9(3):345-60. PubMed ID: 17203379 [Abstract] [Full Text] [Related]
14. Micro-BLMs on highly ordered porous silicon substrates: rupture process and lateral mobility. Weiskopf D, Schmitt EK, Klühr MH, Dertinger SK, Steinem C. Langmuir; 2007 Aug 28; 23(18):9134-9. PubMed ID: 17655338 [Abstract] [Full Text] [Related]
15. Encapsulation of an integrated neural interface device with Parylene C. Hsu JM, Rieth L, Normann RA, Tathireddy P, Solzbacher F. IEEE Trans Biomed Eng; 2009 Jan 28; 56(1):23-9. PubMed ID: 19224715 [Abstract] [Full Text] [Related]
16. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Jensen W, Yoshida K, Hofmann UG. IEEE Trans Biomed Eng; 2006 May 28; 53(5):934-40. PubMed ID: 16686416 [Abstract] [Full Text] [Related]
17. Perforated silicon nerve chips with doped registration electrodes: in vitro performance and in vivo operation. Wallman L, Levinsson A, Schouenborg J, Holmberg H, Montelius L, Danielsen N, Laurell T. IEEE Trans Biomed Eng; 1999 Sep 28; 46(9):1065-73. PubMed ID: 10493069 [Abstract] [Full Text] [Related]
18. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. IEEE Trans Biomed Eng; 1991 Aug 28; 38(8):758-68. PubMed ID: 1937509 [Abstract] [Full Text] [Related]
19. The collagen assisted self-assembly of silicon nanowires. Salhi B, Vaurette F, Grandidier B, Stiévenard D, Melnyk O, Coffinier Y, Boukherroub R. Nanotechnology; 2009 Jun 10; 20(23):235601. PubMed ID: 19451677 [Abstract] [Full Text] [Related]
20. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Zhou Y, Zhi J, Zou Y, Zhang W, Lee ST. Anal Chem; 2008 Jun 01; 80(11):4141-6. PubMed ID: 18447324 [Abstract] [Full Text] [Related] Page: [Next] [New Search]