These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


407 related items for PubMed ID: 17942164

  • 1. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays.
    Gatidou G, Thomaidis NS.
    Aquat Toxicol; 2007 Dec 15; 85(3):184-91. PubMed ID: 17942164
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach.
    Pesce S, Lissalde S, Lavieille D, Margoum C, Mazzella N, Roubeix V, Montuelle B.
    Aquat Toxicol; 2010 Sep 15; 99(4):492-9. PubMed ID: 20638141
    [Abstract] [Full Text] [Related]

  • 4. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers.
    Zhang AQ, Leung KM, Kwok KW, Bao VW, Lam MH.
    Mar Pollut Bull; 2008 Sep 15; 57(6-12):575-86. PubMed ID: 18314144
    [Abstract] [Full Text] [Related]

  • 5. Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan.
    Harino H, Mori Y, Yamaguchi Y, Shibata K, Senda T.
    Arch Environ Contam Toxicol; 2005 Apr 15; 48(3):303-10. PubMed ID: 15750770
    [Abstract] [Full Text] [Related]

  • 6. Predictability of copper, irgarol, and diuron combined effects on sea urchin Paracentrotus lividus.
    Manzo S, Buono S, Cremisini C.
    Arch Environ Contam Toxicol; 2008 Jan 15; 54(1):57-68. PubMed ID: 17805469
    [Abstract] [Full Text] [Related]

  • 7. Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes.
    Lambert SJ, Thomas KV, Davy AJ.
    Chemosphere; 2006 May 15; 63(5):734-43. PubMed ID: 16213569
    [Abstract] [Full Text] [Related]

  • 8. Evaluation of the effects of diuron and its derivatives on Lemna gibba using a fluorescence toxicity index.
    Dewez D, Marchand M, Eullaffroy P, Popovic R.
    Environ Toxicol; 2002 Oct 15; 17(5):493-501. PubMed ID: 12242681
    [Abstract] [Full Text] [Related]

  • 9. Toxic effects of irgarol and diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality.
    Manzo S, Buono S, Cremisini C.
    Arch Environ Contam Toxicol; 2006 Jul 15; 51(1):61-8. PubMed ID: 16446998
    [Abstract] [Full Text] [Related]

  • 10. Mixture toxicity of the antifouling compound irgarol to the marine phytoplankton species Dunaliella tertiolecta.
    DeLorenzo ME, Serrano L.
    J Environ Sci Health B; 2006 Jul 15; 41(8):1349-60. PubMed ID: 17090497
    [Abstract] [Full Text] [Related]

  • 11. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.).
    Chesworth JC, Donkin ME, Brown MT.
    Aquat Toxicol; 2004 Feb 25; 66(3):293-305. PubMed ID: 15129771
    [Abstract] [Full Text] [Related]

  • 12. Diuron metabolites and urothelial cytotoxicity: in vivo, in vitro and molecular approaches.
    Da Rocha MS, Arnold LL, Dodmane PR, Pennington KL, Qiu F, De Camargo JL, Cohen SM.
    Toxicology; 2013 Dec 15; 314(2-3):238-46. PubMed ID: 24172598
    [Abstract] [Full Text] [Related]

  • 13. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay.
    Bengtson Nash SM, Quayle PA, Schreiber U, Müller JF.
    Aquat Toxicol; 2005 May 15; 72(4):315-26. PubMed ID: 15848251
    [Abstract] [Full Text] [Related]

  • 14. Toxicities of Irgarol 1051 derivatives, M2 and M3, to two marine diatom species.
    Zhang AQ, Zhou GJ, Lam MHW, Leung KMY.
    Ecotoxicol Environ Saf; 2019 Oct 30; 182():109455. PubMed ID: 31344592
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The environmental fate of diuron under a conventional production regime in a sugarcane farm during the plant cane phase.
    Stork PR, Bennett FR, Bell MJ.
    Pest Manag Sci; 2008 Sep 30; 64(9):954-63. PubMed ID: 18470961
    [Abstract] [Full Text] [Related]

  • 17. Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England.
    Zhou JL.
    Sci Total Environ; 2008 Nov 15; 406(1-2):239-46. PubMed ID: 18789489
    [Abstract] [Full Text] [Related]

  • 18. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae.
    Jung SM, Bae JS, Kang SG, Son JS, Jeon JH, Lee HJ, Jeon JY, Sidharthan M, Ryu SH, Shin HW.
    Mar Pollut Bull; 2017 Nov 30; 124(2):811-818. PubMed ID: 27919420
    [Abstract] [Full Text] [Related]

  • 19. Antifouling biocides in water and sediments from California marinas.
    Sapozhnikova Y, Wirth E, Schiff K, Fulton M.
    Mar Pollut Bull; 2013 Apr 15; 69(1-2):189-94. PubMed ID: 23453818
    [Abstract] [Full Text] [Related]

  • 20. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina.
    Koutsaftis A, Aoyama I.
    Sci Total Environ; 2007 Nov 15; 387(1-3):166-74. PubMed ID: 17765949
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.