These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 17946157
1. Separation of gastric electrical control activity from simultaneous MGG/EGG recordings using independent component analysis. Irimia A, Gallucci MR, Richards WO, Bradshaw LA. Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3110-3. PubMed ID: 17946157 [Abstract] [Full Text] [Related]
2. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Bradshaw LA, Irimia A, Sims JA, Gallucci MR, Palmer RL, Richards WO. Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726 [Abstract] [Full Text] [Related]
3. Magnetogastrographic detection of gastric electrical response activity in humans. Irimia A, Richards WO, Bradshaw LA. Phys Med Biol; 2006 Mar 07; 51(5):1347-60. PubMed ID: 16481699 [Abstract] [Full Text] [Related]
4. What can be measured from surface electrogastrography. Computer simulations. Liang J, Chen JD. Dig Dis Sci; 1997 Jul 07; 42(7):1331-43. PubMed ID: 9246026 [Abstract] [Full Text] [Related]
5. Surface current density mapping for identification of gastric slow wave propagation. Bradshaw LA, Cheng LK, Richards WO, Pullan AJ. IEEE Trans Biomed Eng; 2009 Aug 07; 56(8):2131-9. PubMed ID: 19403355 [Abstract] [Full Text] [Related]
6. Dependent component analysis for the magnetogastrographic detection of human electrical response activity. Estombelo-Montesco CA, de Araujo DB, Silva Filho AC, Moraes ER, Barros AK, Wakai RT, Baffa O. Physiol Meas; 2007 Sep 07; 28(9):1029-44. PubMed ID: 17827651 [Abstract] [Full Text] [Related]
7. Multichannel magnetogastrogram: a clinical marker for pediatric chronic nausea. Somarajan S, Muszynski ND, Olson JD, Russell AC, Walker LS, Acra SA, Bradshaw LA. Am J Physiol Gastrointest Liver Physiol; 2022 Dec 01; 323(6):G562-G570. PubMed ID: 36255075 [Abstract] [Full Text] [Related]
8. Characterization of gastric electrical activity using magnetic field measurements: a simulation study. Kim JH, Bradshaw LA, Pullan AJ, Cheng LK. Ann Biomed Eng; 2010 Jan 01; 38(1):177-86. PubMed ID: 19774463 [Abstract] [Full Text] [Related]
9. Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks. Liang J, Cheung JY, Chen JD. Ann Biomed Eng; 1997 Jan 01; 25(5):850-7. PubMed ID: 9300109 [Abstract] [Full Text] [Related]
10. Electrogastrography: a noninvasive technique to evaluate gastric electrical activity. Sanmiguel CP, Mintchev MP, Bowes KL. Can J Gastroenterol; 1998 Sep 01; 12(6):423-30. PubMed ID: 9784898 [Abstract] [Full Text] [Related]
11. Comparison of conventional filtering and independent component analysis for artifact reduction in simultaneous gastric EMG and magnetogastrography from porcines. Irimia A, Richards WO, Bradshaw LA. IEEE Trans Biomed Eng; 2009 Nov 01; 56(11):2611-8. PubMed ID: 19398400 [Abstract] [Full Text] [Related]
12. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach. Allescher HD, Abraham-Fuchs K, Dunkel RE, Classen M. Dig Dis Sci; 1998 Apr 01; 43(4):683-93. PubMed ID: 9558020 [Abstract] [Full Text] [Related]
13. Artifact reduction in magnetogastrography using fast independent component analysis. Irimia A, Bradshaw LA. Physiol Meas; 2005 Dec 01; 26(6):1059-73. PubMed ID: 16311453 [Abstract] [Full Text] [Related]
14. Extracting quantitative information from digital electrogastrograms. Mintchev MP, Bowes KL. Med Biol Eng Comput; 1996 May 01; 34(3):244-8. PubMed ID: 8762833 [Abstract] [Full Text] [Related]
15. Quantitative evaluation of the dynamics of external factors influencing canine gastric electrical activity before and after uncoupling. Newton Price C, Mintchev MP. J Med Eng Technol; 2002 May 01; 26(6):239-46. PubMed ID: 12490029 [Abstract] [Full Text] [Related]
16. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram. Agrusa AS, Gharibans AA, Allegra AA, Kunkel DC, Coleman TP. IEEE Trans Biomed Eng; 2020 Mar 01; 67(3):854-867. PubMed ID: 31199249 [Abstract] [Full Text] [Related]
17. Characterization of Electrophysiological Propagation by Multichannel Sensors. Bradshaw LA, Kim JH, Somarajan S, Richards WO, Cheng LK. IEEE Trans Biomed Eng; 2016 Aug 01; 63(8):1751-9. PubMed ID: 26595907 [Abstract] [Full Text] [Related]
18. Effects of atropine sulfate and neostigmine on gastric electrical activity in human subjects--electrogastrographic study. Imai K, Kitakoji H, Chihara E, Sakita M. Hepatogastroenterology; 2008 Aug 01; 55(81):294-7. PubMed ID: 18507128 [Abstract] [Full Text] [Related]
19. A multiscale model of the electrophysiological basis of the human electrogastrogram. Du P, O'Grady G, Cheng LK, Pullan AJ. Biophys J; 2010 Nov 03; 99(9):2784-92. PubMed ID: 21044575 [Abstract] [Full Text] [Related]
20. A Simulated Anatomically Accurate Investigation Into the Effects of Biodiversity on Electrogastrography. Calder S, O'Grady G, Cheng LK, Du P. IEEE Trans Biomed Eng; 2020 Mar 03; 67(3):868-875. PubMed ID: 31199250 [Abstract] [Full Text] [Related] Page: [Next] [New Search]