These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 17949679

  • 1. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H, Gasmi-Seabrook G, Choi MY, Deber CM.
    Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW, Clarke DM.
    Biochem Pharmacol; 2014 Mar 01; 88(1):46-57. PubMed ID: 24412276
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H, Rath A, Glibowicka M, Deber CM.
    Biochemistry; 2007 Jun 19; 46(24):7099-106. PubMed ID: 17516627
    [Abstract] [Full Text] [Related]

  • 6. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM, Deber CM.
    Biochim Biophys Acta; 2012 Jan 19; 1818(1):49-54. PubMed ID: 21996038
    [Abstract] [Full Text] [Related]

  • 7. Structural effects of extracellular loop mutations in CFTR helical hairpins.
    Chang YH, Stone TA, Chin S, Glibowicka M, Bear CE, Deber CM.
    Biochim Biophys Acta Biomembr; 2018 May 19; 1860(5):1092-1098. PubMed ID: 29307731
    [Abstract] [Full Text] [Related]

  • 8. Interhelical hydrogen bonds in the CFTR membrane domain.
    Therien AG, Grant FE, Deber CM.
    Nat Struct Biol; 2001 Jul 19; 8(7):597-601. PubMed ID: 11427889
    [Abstract] [Full Text] [Related]

  • 9. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor.
    Krainer G, Schenkel M, Hartmann A, Ravamehr-Lake D, Deber CM, Schlierf M.
    J Biol Chem; 2020 Feb 14; 295(7):1985-1991. PubMed ID: 31882543
    [Abstract] [Full Text] [Related]

  • 10. Loop sequence dictates the secondary structure of a human membrane protein hairpin.
    Nadeau VG, Deber CM.
    Biochemistry; 2013 Apr 09; 52(14):2419-26. PubMed ID: 23488803
    [Abstract] [Full Text] [Related]

  • 11. Impact of cholesterol and Lumacaftor on the folding of CFTR helical hairpins.
    Schenkel M, Ravamehr-Lake D, Czerniak T, Saenz JP, Krainer G, Schlierf M, Deber CM.
    Biochim Biophys Acta Biomembr; 2023 Jan 01; 1865(1):184078. PubMed ID: 36279907
    [Abstract] [Full Text] [Related]

  • 12. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M, Zhang JT.
    Biochemistry; 1999 Apr 27; 38(17):5471-7. PubMed ID: 10220334
    [Abstract] [Full Text] [Related]

  • 13. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM, Heslop CL, Deber CM.
    Biochemistry; 2004 Nov 16; 43(45):14361-9. PubMed ID: 15533040
    [Abstract] [Full Text] [Related]

  • 14. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC, Vijayakumar S, Jones JD, Slaughter C, Thomas PJ.
    Biochemistry; 1998 Jan 20; 37(3):844-53. PubMed ID: 9454574
    [Abstract] [Full Text] [Related]

  • 15. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
    Chen EY, Bartlett MC, Loo TW, Clarke DM.
    J Biol Chem; 2004 Sep 17; 279(38):39620-7. PubMed ID: 15272010
    [Abstract] [Full Text] [Related]

  • 16. Interhelical packing in detergent micelles. Folding of a cystic fibrosis transmembrane conductance regulator construct.
    Therien AG, Deber CM.
    J Biol Chem; 2002 Feb 22; 277(8):6067-72. PubMed ID: 11748233
    [Abstract] [Full Text] [Related]

  • 17. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA, Ko YH, Pedersen PL, Mildvan AS.
    Biochemistry; 1999 Jun 08; 38(23):7453-61. PubMed ID: 10360942
    [Abstract] [Full Text] [Related]

  • 18. Dissection of de novo membrane insertion activities of internal transmembrane segments of ATP-binding-cassette transporters: toward understanding topological rules for membrane assembly of polytopic membrane proteins.
    Zhang JT, Chen M, Han E, Wang C.
    Mol Biol Cell; 1998 Apr 08; 9(4):853-63. PubMed ID: 9529383
    [Abstract] [Full Text] [Related]

  • 19. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.
    Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM.
    Proc Natl Acad Sci U S A; 2009 Feb 10; 106(6):1760-5. PubMed ID: 19181854
    [Abstract] [Full Text] [Related]

  • 20. Cystic fibrosis transmembrane conductance regulator: expression and helicity of a double membrane-spanning segment.
    Peng S, Liu LP, Emili AQ, Deber CM.
    FEBS Lett; 1998 Jul 10; 431(1):29-33. PubMed ID: 9684859
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.