These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
183 related items for PubMed ID: 17950757
1. Prediction of convection-enhanced drug delivery to the human brain. Linninger AA, Somayaji MR, Mekarski M, Zhang L. J Theor Biol; 2008 Jan 07; 250(1):125-38. PubMed ID: 17950757 [Abstract] [Full Text] [Related]
2. Rigorous mathematical modeling techniques for optimal delivery of macromolecules to the brain. Linninger AA, Somayaji MR, Zhang L, Smitha Hariharan M, Penn RD. IEEE Trans Biomed Eng; 2008 Sep 07; 55(9):2303-13. PubMed ID: 18713700 [Abstract] [Full Text] [Related]
3. Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. Chen ZJ, Broaddus WC, Viswanathan RR, Raghavan R, Gillies GT. IEEE Trans Biomed Eng; 2002 Feb 07; 49(2):85-96. PubMed ID: 12066887 [Abstract] [Full Text] [Related]
4. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. Linninger AA, Somayaji MR, Erickson T, Guo X, Penn RD. J Biomech; 2008 Jul 19; 41(10):2176-87. PubMed ID: 18550067 [Abstract] [Full Text] [Related]
5. Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Saito R, Krauze MT, Bringas JR, Noble C, McKnight TR, Jackson P, Wendland MF, Mamot C, Drummond DC, Kirpotin DB, Hong K, Berger MS, Park JW, Bankiewicz KS. Exp Neurol; 2005 Dec 19; 196(2):381-9. PubMed ID: 16197944 [Abstract] [Full Text] [Related]
6. Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Krauze MT, Saito R, Noble C, Bringas J, Forsayeth J, McKnight TR, Park J, Bankiewicz KS. Exp Neurol; 2005 Nov 19; 196(1):104-11. PubMed ID: 16109410 [Abstract] [Full Text] [Related]
7. Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Mardor Y, Rahav O, Zauberman Y, Lidar Z, Ocherashvilli A, Daniels D, Roth Y, Maier SE, Orenstein A, Ram Z. Cancer Res; 2005 Aug 01; 65(15):6858-63. PubMed ID: 16061669 [Abstract] [Full Text] [Related]
8. Designing and testing of backflow-free catheters. Ivanchenko O, Ivanchenko V. J Biomech Eng; 2011 Jun 01; 133(6):061003. PubMed ID: 21744923 [Abstract] [Full Text] [Related]
9. Fabrication and characterization of microfluidic probes for convection enhanced drug delivery. Neeves KB, Lo CT, Foley CP, Saltzman WM, Olbricht WL. J Control Release; 2006 Apr 10; 111(3):252-62. PubMed ID: 16476500 [Abstract] [Full Text] [Related]
10. A realistic brain tissue phantom for intraparenchymal infusion studies. Chen ZJ, Gillies GT, Broaddus WC, Prabhu SS, Fillmore H, Mitchell RM, Corwin FD, Fatouros PP. J Neurosurg; 2004 Aug 10; 101(2):314-22. PubMed ID: 15309925 [Abstract] [Full Text] [Related]
11. Minimally invasive procedures. Advances in image-guided delivery of drug and cell therapies into the central nervous system. Broaddus WC, Gillies GT, Kucharczyk J. Neuroimaging Clin N Am; 2001 Nov 10; 11(4):727-35. PubMed ID: 11995427 [Abstract] [Full Text] [Related]
12. Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery. Sindhwani N, Ivanchenko O, Lueshen E, Prem K, Linninger AA. IEEE Trans Biomed Eng; 2011 Mar 10; 58(3):626-32. PubMed ID: 21342811 [Abstract] [Full Text] [Related]
13. Benchmarking the ERG valve tip and MRI Interventions Smart Flow neurocatheter convection-enhanced delivery system's performance in a gel model of the brain: employing infusion protocols proposed for gene therapy for Parkinson's disease. Sillay K, Schomberg D, Hinchman A, Kumbier L, Ross C, Kubota K, Brodsky E, Miranpuri G. J Neural Eng; 2012 Apr 10; 9(2):026009. PubMed ID: 22331865 [Abstract] [Full Text] [Related]
14. Convection-enhanced delivery for treatment of brain tumors. Ferguson SD, Foster K, Yamini B. Expert Rev Anticancer Ther; 2007 Dec 10; 7(12 Suppl):S79-85. PubMed ID: 18076322 [Abstract] [Full Text] [Related]
16. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. Krauze MT, Saito R, Noble C, Tamas M, Bringas J, Park JW, Berger MS, Bankiewicz K. J Neurosurg; 2005 Nov 10; 103(5):923-9. PubMed ID: 16304999 [Abstract] [Full Text] [Related]
17. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Juillerat-Jeanneret L. Drug Discov Today; 2008 Dec 10; 13(23-24):1099-106. PubMed ID: 18848640 [Abstract] [Full Text] [Related]
18. Ultrasound-assisted convection-enhanced delivery to the brain in vivo with a novel transducer cannula assembly: laboratory investigation. Lewis GK, Schulz ZR, Pannullo SC, Southard TL, Olbricht WL. J Neurosurg; 2012 Dec 10; 117(6):1128-40. PubMed ID: 22998056 [Abstract] [Full Text] [Related]
19. Targeted drug delivery to the brain using focused ultrasound. Kinoshita M. Top Magn Reson Imaging; 2006 Jun 10; 17(3):209-15. PubMed ID: 17414078 [Abstract] [Full Text] [Related]
20. A novel coaxial tube catheter for central nervous system infusions: performance characteristics in brain phantom gel. Panse SJ, Fillmore HL, Chen ZJ, Gillies GT, Broaddus WC. J Med Eng Technol; 2010 Jun 10; 34(7-8):408-14. PubMed ID: 20807174 [Abstract] [Full Text] [Related] Page: [Next] [New Search]