These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 17950825

  • 1. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus.
    Tada H, Nishimura Y, Suzuki T.
    Int J Biol Macromol; 2008 Jan 01; 42(1):46-51. PubMed ID: 17950825
    [Abstract] [Full Text] [Related]

  • 2. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus. II. Evidence from site-directed mutagenesis studies.
    Tada H, Suzuki T.
    Int J Biol Macromol; 2010 Aug 01; 47(2):250-4. PubMed ID: 20434482
    [Abstract] [Full Text] [Related]

  • 3. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains.
    Uda K, Yamamoto K, Iwasaki N, Iwai M, Fujikura K, Ellington WR, Suzuki T.
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct 01; 151(2):176-82. PubMed ID: 18639645
    [Abstract] [Full Text] [Related]

  • 4. Toxocara canis: molecular cloning, characterization, expression and comparison of the kinetics of cDNA-derived arginine kinase.
    Wickramasinghe S, Uda K, Nagataki M, Yatawara L, Rajapakse RP, Watanabe Y, Suzuki T, Agatsuma T.
    Exp Parasitol; 2007 Oct 01; 117(2):124-32. PubMed ID: 17574244
    [Abstract] [Full Text] [Related]

  • 5. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K, Iwai A, Suzuki T.
    FEBS Lett; 2005 Dec 19; 579(30):6756-62. PubMed ID: 16325813
    [Abstract] [Full Text] [Related]

  • 6. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution.
    Uda K, Ellington WR, Suzuki T.
    Gene; 2012 Apr 15; 497(2):214-27. PubMed ID: 22305986
    [Abstract] [Full Text] [Related]

  • 7. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K, Suzuki T.
    FEBS Lett; 2004 Aug 27; 573(1-3):78-82. PubMed ID: 15327979
    [Abstract] [Full Text] [Related]

  • 8. Evolution of phosphagen kinase. Isolation, characterization and cDNA-derived amino acid sequence of two-domain arginine kinase from the sea anemone Anthopleura japonicus.
    Suzuki T, Kawasaki Y, Furukohri T.
    Biochem J; 1997 Nov 15; 328 ( Pt 1)(Pt 1):301-6. PubMed ID: 9359868
    [Abstract] [Full Text] [Related]

  • 9. Arginine kinase from Litopenaeus vannamei: cloning, expression and catalytic properties.
    Yao CL, Ji PF, Kong P, Wang ZY, Xiang JH.
    Fish Shellfish Immunol; 2009 Mar 15; 26(3):553-8. PubMed ID: 19239924
    [Abstract] [Full Text] [Related]

  • 10. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage.
    Iwanami K, Iseno S, Uda K, Suzuki T.
    Gene; 2009 May 15; 437(1-2):80-7. PubMed ID: 19268694
    [Abstract] [Full Text] [Related]

  • 11. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T, Kamidochi M, Inoue N, Kawamichi H, Yazawa Y, Furukohri T, Ellington WR.
    Biochem J; 1999 Jun 15; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [Abstract] [Full Text] [Related]

  • 12. Functional consequences of a gene duplication and fusion event in an arginine kinase.
    Compaan DM, Ellington WR.
    J Exp Biol; 2003 May 15; 206(Pt 9):1545-56. PubMed ID: 12654893
    [Abstract] [Full Text] [Related]

  • 13. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure.
    Zhang JW, Zhao TJ, Wang SL, Guo Q, Liu TT, Zhao F, Wang XC.
    Int J Biol Macromol; 2006 May 30; 38(3-5):203-10. PubMed ID: 16574215
    [Abstract] [Full Text] [Related]

  • 14. Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica.
    Suzuki T, Tomoyuki T, Uda K.
    FEBS Lett; 2003 Jan 02; 533(1-3):95-8. PubMed ID: 12505165
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K, Kuwasaki A, Shima K, Matsumoto T, Suzuki T.
    Int J Biol Macromol; 2009 Jun 01; 44(5):413-8. PubMed ID: 19428475
    [Abstract] [Full Text] [Related]

  • 17. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase.
    Fujimoto N, Tanaka K, Suzuki T.
    FEBS Lett; 2005 Mar 14; 579(7):1688-92. PubMed ID: 15757662
    [Abstract] [Full Text] [Related]

  • 18. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T, Yamamoto Y, Umekawa M.
    Biochem J; 2000 Nov 01; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [Abstract] [Full Text] [Related]

  • 19. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid).
    Feng Z, Qin G, Xicheng W.
    Int J Biol Macromol; 2005 Aug 01; 36(3):184-90. PubMed ID: 16038973
    [Abstract] [Full Text] [Related]

  • 20. Gene structure of two-domain arginine kinases from Anthopleura japonicus and Pseudocardium sachalinensis.
    Suzuki T, Yamamoto Y.
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Dec 01; 127(4):513-8. PubMed ID: 11281268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.