These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 17957560
21. Exposure to fuel-oil ash and welding emissions during the overhaul of an oil-fired boiler. Liu Y, Woodin MA, Smith TJ, Herrick RF, Williams PL, Hauser R, Christiani DC. J Occup Environ Hyg; 2005 Sep; 2(9):435-43. PubMed ID: 16048845 [Abstract] [Full Text] [Related]
22. Manganese exposures during shielded metal arc welding (SMAW) in an enclosed space. Harris MK, Ewing WM, Longo W, DePasquale C, Mount MD, Hatfield R, Stapleton R. J Occup Environ Hyg; 2005 Aug; 2(8):375-82. PubMed ID: 16080259 [Abstract] [Full Text] [Related]
23. Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel. Stephenson D, Seshadri G, Veranth JM. AIHA J (Fairfax, Va); 2003 Aug; 64(4):516-21. PubMed ID: 12908868 [Abstract] [Full Text] [Related]
24. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum. Pfefferkorn FE, Bello D, Haddad G, Park JY, Powell M, McCarthy J, Bunker KL, Fehrenbacher A, Jeon Y, Virji MA, Gruetzmacher G, Hoover MD. Ann Occup Hyg; 2010 Jul; 54(5):486-503. PubMed ID: 20453001 [Abstract] [Full Text] [Related]
25. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes. Sriram K, Lin GX, Jefferson AM, Stone S, Afshari A, Keane MJ, McKinney W, Jackson M, Chen BT, Schwegler-Berry D, Cumpston A, Cumpston JL, Roberts JR, Frazer DG, Antonini JM. Toxicology; 2015 Feb 03; 328():168-78. PubMed ID: 25549921 [Abstract] [Full Text] [Related]
26. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive. Topham N, Wang J, Kalivoda M, Huang J, Yu KM, Hsu YM, Wu CY, Oh S, Cho K, Paulson K. Ann Occup Hyg; 2012 Mar 03; 56(2):233-41. PubMed ID: 22104317 [Abstract] [Full Text] [Related]
27. Air sampling methodology for asphalt fume in asphalt production and asphalt roofing manufacturing facilities: total particulate sampler versus inhalable particulate sampler. Calzavara TS, Carter CM, Axten C. Appl Occup Environ Hyg; 2003 May 03; 18(5):358-67. PubMed ID: 12746079 [Abstract] [Full Text] [Related]
28. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Jørgensen RB, Buhagen M, Føreland S. Occup Environ Med; 2016 Jul 03; 73(7):467-73. PubMed ID: 27016529 [Abstract] [Full Text] [Related]
29. Estimation of regional pulmonary deposition and exposure for fumes from SMAW and GMAW mild and stainless steel consumables. Hewett P. Am Ind Hyg Assoc J; 1995 Feb 03; 56(2):136-42. PubMed ID: 7856514 [Abstract] [Full Text] [Related]
30. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel. Miettinen M, Torvela T, Leskinen JT. Ann Occup Hyg; 2016 Oct 03; 60(8):960-8. PubMed ID: 27390355 [Abstract] [Full Text] [Related]
31. Some difficulties in the assessment of electric arc welding fume. Hewitt PJ, Gray CN. Am Ind Hyg Assoc J; 1983 Oct 03; 44(10):727-32. PubMed ID: 6650393 [Abstract] [Full Text] [Related]
32. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders. Graczyk H, Lewinski N, Zhao J, Concha-Lozano N, Riediker M. Ann Occup Hyg; 2016 Mar 03; 60(2):205-19. PubMed ID: 26464505 [Abstract] [Full Text] [Related]
33. Manganese Fractionation Using a Sequential Extraction Method to Evaluate Welders' Shielded Metal Arc Welding Exposures During Construction Projects in Oil Refineries. Hanley KW, Andrews R, Bertke S, Ashley K. J Occup Environ Hyg; 2015 Mar 03; 12(11):774-84. PubMed ID: 26011602 [Abstract] [Full Text] [Related]
34. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. Chang C, Demokritou P, Shafer M, Christiani D. Environ Sci Process Impacts; 2013 Jan 03; 15(1):214-24. PubMed ID: 24592438 [Abstract] [Full Text] [Related]
35. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors. Cheng YH, Huang CH, Huang HL, Tsai CJ. Sci Total Environ; 2010 Dec 15; 409(2):364-9. PubMed ID: 21071066 [Abstract] [Full Text] [Related]
36. Size distribution of airborne dust in Labrador iron mines. Knight G, Moore E, Smith CW. Am Ind Hyg Assoc J; 1987 Feb 15; 48(2):150-4. PubMed ID: 3565269 [Abstract] [Full Text] [Related]
37. Evaluation of the filtration performance of NIOSH-approved N95 filtering facepiece respirators by photometric and number-based test methods. Rengasamy S, Miller A, Eimer BC. J Occup Environ Hyg; 2011 Jan 15; 8(1):23-30. PubMed ID: 21154105 [Abstract] [Full Text] [Related]
38. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility. Taube F. Ann Occup Hyg; 2013 Jan 15; 57(1):6-25. PubMed ID: 22997412 [Abstract] [Full Text] [Related]
39. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. Wichmann HE, Spix C, Tuch T, Wölke G, Peters A, Heinrich J, Kreyling WG, Heyder J. Res Rep Health Eff Inst; 2000 Nov 15; (98):5-86; discussion 87-94. PubMed ID: 11918089 [Abstract] [Full Text] [Related]
40. Ultrafine particles at workplaces of a primary aluminium smelter. Thomassen Y, Koch W, Dunkhorst W, Ellingsen DG, Skaugset NP, Jordbekken L, Arne Drabløs P, Weinbruch S. J Environ Monit; 2006 Jan 15; 8(1):127-33. PubMed ID: 16395469 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]