These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 17957722

  • 1. In vitro characterization of micropatterned PLGA-PHBV8 blend films as temporary scaffolds for photoreceptor cells.
    Tezcaner A, Hicks D.
    J Biomed Mater Res A; 2008 Jul; 86(1):170-81. PubMed ID: 17957722
    [Abstract] [Full Text] [Related]

  • 2. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ, Meredith C, Johnson C, Galis ZS.
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [Abstract] [Full Text] [Related]

  • 3. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors.
    Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ.
    Biomaterials; 2005 Jun; 26(16):3187-96. PubMed ID: 15603813
    [Abstract] [Full Text] [Related]

  • 4. Influence of keratocytes and retinal pigment epithelial cells on the mechanical properties of polyester-based tissue engineering micropatterned films.
    Zorlutuna P, Builles N, Damour O, Elsheikh A, Hasirci V.
    Biomaterials; 2007 Aug; 28(24):3489-96. PubMed ID: 17482673
    [Abstract] [Full Text] [Related]

  • 5. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S, Lee GY, Wong JY, Desai TA.
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [Abstract] [Full Text] [Related]

  • 6. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS, Lee EA, Yoon JJ, Park TG.
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [Abstract] [Full Text] [Related]

  • 7. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.
    Huang W, Shi X, Ren L, Du C, Wang Y.
    Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806
    [Abstract] [Full Text] [Related]

  • 8. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells.
    Zhu XH, Lee LY, Jackson JS, Tong YW, Wang CH.
    Biotechnol Bioeng; 2008 Aug 01; 100(5):998-1009. PubMed ID: 18551526
    [Abstract] [Full Text] [Related]

  • 9. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold.
    Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS.
    Biomaterials; 2007 Jun 01; 28(17):2763-71. PubMed ID: 17350678
    [Abstract] [Full Text] [Related]

  • 10. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering.
    Xie S, Zhu Q, Wang B, Gu H, Liu W, Cui L, Cen L, Cao Y.
    Biomaterials; 2010 Jul 01; 31(19):5100-9. PubMed ID: 20347132
    [Abstract] [Full Text] [Related]

  • 11. Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel.
    Hu X, Zhou J, Zhang N, Tan H, Gao C.
    J Mech Behav Biomed Mater; 2008 Oct 01; 1(4):352-9. PubMed ID: 19627800
    [Abstract] [Full Text] [Related]

  • 12. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M, Yoon SJ, Ko YK, Ha HJ, Kim SH, So JW, Idrus RB, Khang G.
    J Biomater Sci Polym Ed; 2008 Oct 01; 19(9):1219-37. PubMed ID: 18727862
    [Abstract] [Full Text] [Related]

  • 13. Effect of functionalized micropatterned PLGA on guided neurite growth.
    Yao L, Wang S, Cui W, Sherlock R, O'Connell C, Damodaran G, Gorman A, Windebank A, Pandit A.
    Acta Biomater; 2009 Feb 01; 5(2):580-8. PubMed ID: 18835227
    [Abstract] [Full Text] [Related]

  • 14. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH, Kim YH, Park MS, Kim IA, Shin JW, Yang WI, Jee KS, Park KD, Ryu GH, Lee JW.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):850-61. PubMed ID: 18200543
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells.
    Yao J, Tucker BA, Zhang X, Checa-Casalengua P, Herrero-Vanrell R, Young MJ.
    Biomaterials; 2011 Feb 15; 32(4):1041-50. PubMed ID: 21030072
    [Abstract] [Full Text] [Related]

  • 17. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering.
    Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V.
    Biomaterials; 2009 Jul 15; 30(21):3551-9. PubMed ID: 19361857
    [Abstract] [Full Text] [Related]

  • 18. Characterization of emulsified chitosan-PLGA matrices formed using controlled-rate freezing and lyophilization technique.
    Moshfeghian A, Tillman J, Madihally SV.
    J Biomed Mater Res A; 2006 Nov 15; 79(2):418-30. PubMed ID: 16906526
    [Abstract] [Full Text] [Related]

  • 19. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds.
    Xiong Y, Zeng YS, Zeng CG, Du BL, He LM, Quan DP, Zhang W, Wang JM, Wu JL, Li Y, Li J.
    Biomaterials; 2009 Aug 15; 30(22):3711-22. PubMed ID: 19375792
    [Abstract] [Full Text] [Related]

  • 20. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh.
    Chen G, Sato T, Ohgushi H, Ushida T, Tateishi T, Tanaka J.
    Biomaterials; 2005 May 15; 26(15):2559-66. PubMed ID: 15585258
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.