These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 179583

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. L-lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose.
    Badia J, Gimenez R, Baldomá L, Barnes E, Fessner WD, Aguilar J.
    J Bacteriol; 1991 Aug; 173(16):5144-50. PubMed ID: 1650346
    [Abstract] [Full Text] [Related]

  • 25. Acquisition of ability to utilize Xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli.
    Scangos GA, Reiner AM.
    J Bacteriol; 1978 May; 134(2):501-5. PubMed ID: 207668
    [Abstract] [Full Text] [Related]

  • 26. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.
    Doten RC, Mortlock RP.
    J Bacteriol; 1984 Aug; 159(2):730-5. PubMed ID: 6378891
    [Abstract] [Full Text] [Related]

  • 27. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
    Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S.
    J Biotechnol; 2016 Aug 10; 231():160-166. PubMed ID: 27297548
    [Abstract] [Full Text] [Related]

  • 28. Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli.
    Jin LQ, Xu W, Yang B, Liu ZQ, Zheng YG.
    Appl Biochem Biotechnol; 2019 Apr 10; 187(4):1143-1157. PubMed ID: 30175383
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose.
    Nichols NN, Saha BC.
    Biotechnol Prog; 2016 May 10; 32(3):606-12. PubMed ID: 26950770
    [Abstract] [Full Text] [Related]

  • 32. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
    Cirino PC, Chin JW, Ingram LO.
    Biotechnol Bioeng; 2006 Dec 20; 95(6):1167-76. PubMed ID: 16838379
    [Abstract] [Full Text] [Related]

  • 33. L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli.
    Zhu Y, Lin EC.
    J Bacteriol; 1989 Feb 20; 171(2):862-7. PubMed ID: 2644239
    [Abstract] [Full Text] [Related]

  • 34. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J, Du R, Song G, Zhang Y, Ping W.
    J Biosci Bioeng; 2017 Oct 20; 124(4):386-391. PubMed ID: 28527826
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme.
    Boronat A, Aguilar J.
    J Bacteriol; 1979 Nov 20; 140(2):320-6. PubMed ID: 40956
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.