These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


244 related items for PubMed ID: 17960266

  • 1. Integration of large-area polymer nanopillar arrays into microfluidic devices using in situ polymerization cast molding.
    Chen G, McCandless GT, McCarley RL, Soper SA.
    Lab Chip; 2007 Nov; 7(11):1424-7. PubMed ID: 17960266
    [Abstract] [Full Text] [Related]

  • 2. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z, Gao Y, Su R, Li C, Lin J.
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [Abstract] [Full Text] [Related]

  • 3. Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation.
    Kuo CW, Shiu JY, Wei KH, Chen P.
    J Chromatogr A; 2007 Aug 31; 1162(2):175-9. PubMed ID: 17628581
    [Abstract] [Full Text] [Related]

  • 4. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R, Hupert ML, Pullagurla SR, Balamurugan S, Tamarit-López J, Park S, Datta P, Goettert J, Cho YK, Soper SA.
    Lab Chip; 2010 Dec 07; 10(23):3255-64. PubMed ID: 20938506
    [Abstract] [Full Text] [Related]

  • 5. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK, Ng WY, Mahabadi KA, Liang YN, Rodríguez I.
    Biotechnol J; 2007 Nov 07; 2(11):1381-8. PubMed ID: 17886237
    [Abstract] [Full Text] [Related]

  • 6. Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity.
    Zhang Y, Lo CW, Taylor JA, Yang S.
    Langmuir; 2006 Sep 26; 22(20):8595-601. PubMed ID: 16981781
    [Abstract] [Full Text] [Related]

  • 7. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K, Sugiura S, Kanamori T.
    Lab Chip; 2009 Jun 21; 9(12):1763-72. PubMed ID: 19495461
    [Abstract] [Full Text] [Related]

  • 8. Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles.
    Chen G, Soper SA, McCarley RL.
    Langmuir; 2007 Nov 06; 23(23):11777-81. PubMed ID: 17929951
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS, Lee HL, Ram RJ.
    Lab Chip; 2007 Nov 06; 7(11):1539-45. PubMed ID: 17960283
    [Abstract] [Full Text] [Related]

  • 11. The control of cell adhesion on a PMMA polymer surface consisting of nanopillar arrays.
    Ahn J, Son SJ, Min J.
    J Biotechnol; 2013 Apr 15; 164(4):543-8. PubMed ID: 23353729
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Surface-reactive acrylic copolymer for fabrication of microfluidic devices.
    Liu J, Sun X, Lee ML.
    Anal Chem; 2005 Oct 01; 77(19):6280-7. PubMed ID: 16194089
    [Abstract] [Full Text] [Related]

  • 16. Nanoembossed polymer substrates for biomedical surface interaction studies.
    Mills CA, Martinez E, Errachid A, Engel E, Funes M, Moormann C, Wahlbrink T, Gomila G, Planell J, Samitier J.
    J Nanosci Nanotechnol; 2007 Dec 01; 7(12):4588-94. PubMed ID: 18283849
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.