These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Länge K, Blaess G, Voigt A, Götzen R, Rapp M. Biosens Bioelectron; 2006 Aug 15; 22(2):227-32. PubMed ID: 16458497 [Abstract] [Full Text] [Related]
8. Optical sensing systems for microfluidic devices: a review. Kuswandi B, Nuriman, Huskens J, Verboom W. Anal Chim Acta; 2007 Oct 10; 601(2):141-55. PubMed ID: 17920386 [Abstract] [Full Text] [Related]
9. Efficiency of integrated waveguide probes for the detection of light backscattered from weakly scattering media. Ismail N, Civitci F, Wörhoff K, de Ridder RM, Pollnau M, Driessen A. Appl Opt; 2011 Feb 20; 50(6):935-42. PubMed ID: 21343974 [Abstract] [Full Text] [Related]
10. Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall. Chronis N, Lee LP. Lab Chip; 2004 Apr 20; 4(2):125-30. PubMed ID: 15052352 [Abstract] [Full Text] [Related]
11. Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers. Sun P, Reano RM. Opt Express; 2011 Feb 28; 19(5):4722-7. PubMed ID: 21369303 [Abstract] [Full Text] [Related]
12. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics. Tung YC, Torisawa YS, Futai N, Takayama S. Lab Chip; 2007 Nov 28; 7(11):1497-503. PubMed ID: 17960277 [Abstract] [Full Text] [Related]
13. Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers. Liu N, Ruseckas A, Montgomery NA, Samuel ID, Turnbull GA. Opt Express; 2009 Nov 23; 17(24):21452-8. PubMed ID: 19997385 [Abstract] [Full Text] [Related]
14. Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides. Martinez Vazquez R, Osellame R, Cretich M, Chiari M, Dongre C, Hoekstra HJ, Pollnau M, van den Vlekkert H, Ramponi R, Cerullo G. Anal Bioanal Chem; 2009 Feb 23; 393(4):1209-16. PubMed ID: 18839156 [Abstract] [Full Text] [Related]
15. Facile fabrication of gelatin-based biopolymeric optical waveguides. Manocchi AK, Domachuk P, Omenetto FG, Yi H. Biotechnol Bioeng; 2009 Jul 01; 103(4):725-32. PubMed ID: 19360894 [Abstract] [Full Text] [Related]
16. Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing. Llobera A, Wilke R, Büttgenbach S. Lab Chip; 2005 May 01; 5(5):506-11. PubMed ID: 15856086 [Abstract] [Full Text] [Related]
17. A fabrication platform for electrically mediated optically active biofunctionalized sites in BioMEMS. Powers MA, Koev ST, Schleunitz A, Yi H, Hodzic V, Bentley WE, Payne GF, Rubloff GW, Ghodssi R. Lab Chip; 2005 Jun 01; 5(6):583-6. PubMed ID: 15915249 [Abstract] [Full Text] [Related]
18. Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer. Hiltunen J, Hiltunen M, Puustinen J, Lappalainen J, Karioja P. Opt Express; 2009 Dec 07; 17(25):22813-22. PubMed ID: 20052207 [Abstract] [Full Text] [Related]
19. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides. Zhu S, Fang Q, Yu MB, Lo GQ, Kwong DL. Opt Express; 2009 Nov 09; 17(23):20891-9. PubMed ID: 19997326 [Abstract] [Full Text] [Related]
20. An integrated optics microfluidic device for detecting single DNA molecules. Krogmeier JR, Schaefer I, Seward G, Yantz GR, Larson JW. Lab Chip; 2007 Dec 09; 7(12):1767-74. PubMed ID: 18030399 [Abstract] [Full Text] [Related] Page: [Next] [New Search]