These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 17961500

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Identification by site-directed mutagenesis and chemical modification of three vicinal cysteine residues in rat mitochondrial carnitine/acylcarnitine transporter.
    Tonazzi A, Giangregorio N, Indiveri C, Palmieri F.
    J Biol Chem; 2005 May 20; 280(20):19607-12. PubMed ID: 15757911
    [Abstract] [Full Text] [Related]

  • 5. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136.
    Tonazzi A, Giangregorio N, Console L, De Palma A, Indiveri C.
    Biochim Biophys Acta Bioenerg; 2017 Jul 20; 1858(7):475-482. PubMed ID: 28438511
    [Abstract] [Full Text] [Related]

  • 6. The mitochondrial carnitine/acylcarnitine carrier is regulated by hydrogen sulfide via interaction with C136 and C155.
    Giangregorio N, Tonazzi A, Console L, Lorusso I, De Palma A, Indiveri C.
    Biochim Biophys Acta; 2016 Jan 20; 1860(1 Pt A):20-7. PubMed ID: 26459002
    [Abstract] [Full Text] [Related]

  • 7. Proline/Glycine residues of the PG-levels guide conformational changes along the transport cycle in the mitochondrial carnitine/acylcarnitine carrier (SLC25A20).
    Giangregorio N, Pierri CL, Tonazzi A, Incampo G, Tragni V, De Grassi A, Indiveri C.
    Int J Biol Macromol; 2022 Nov 30; 221():1453-1465. PubMed ID: 36122779
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Identification by site-directed mutagenesis of a hydrophobic binding site of the mitochondrial carnitine/acylcarnitine carrier involved in the interaction with acyl groups.
    Tonazzi A, Console L, Giangregorio N, Indiveri C, Palmieri F.
    Biochim Biophys Acta; 2012 May 30; 1817(5):697-704. PubMed ID: 22365929
    [Abstract] [Full Text] [Related]

  • 17. Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway.
    Dodd JR, Christie DL.
    J Biol Chem; 2005 Sep 23; 280(38):32649-54. PubMed ID: 16049011
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Cysteine 144 in the third transmembrane domain of the creatine transporter is located close to a substrate-binding site.
    Dodd JR, Christie DL.
    J Biol Chem; 2001 Dec 14; 276(50):46983-8. PubMed ID: 11598117
    [Abstract] [Full Text] [Related]

  • 20. The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology.
    Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, Console L, Palmieri F.
    Mol Aspects Med; 2011 Aug 14; 32(4-6):223-33. PubMed ID: 22020112
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.