These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 17962954
1. Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Zhao JJ, Sun DG, Wang J, Liu SR, Zhang CY, Zhu MX, Ma X. Childs Nerv Syst; 2008 Apr; 24(4):485-92. PubMed ID: 17962954 [Abstract] [Full Text] [Related]
2. Preliminary investigation of methylation status of microRNA-124a in spinal cords of rat fetuses with congenital spina bifida. Qin P, Li L, Zhang D, Liu QL, Chen XR, Yang HY, Fan Y, Wang JX. J Matern Fetal Neonatal Med; 2017 Jan; 30(1):23-28. PubMed ID: 26611840 [Abstract] [Full Text] [Related]
3. Altered expression of 14-3-3ζ protein in spinal cords of rat fetuses with spina bifida aperta. Wu LN, Wei XW, Fan Y, Miao JN, Wang LL, Zhang Y, Wu D, Yuan ZW. PLoS One; 2013 Jan; 8(8):e70457. PubMed ID: 23936434 [Abstract] [Full Text] [Related]
4. Disturbed apoptosis and cell proliferation in developing neuroepithelium of lumbo-sacral neural tubes in retinoic acid-induced spina bifida aperta in rat. Wei X, Li H, Miao J, Zhou F, Liu B, Wu D, Li S, Wang L, Fan Y, Wang W, Yuan Z. Int J Dev Neurosci; 2012 Aug; 30(5):375-81. PubMed ID: 22504176 [Abstract] [Full Text] [Related]
5. Retinoic acid induced myelomeningocele in fetal rats: characterization by histopathological analysis and magnetic resonance imaging. Danzer E, Schwarz U, Wehrli S, Radu A, Adzick NS, Flake AW. Exp Neurol; 2005 Aug; 194(2):467-75. PubMed ID: 15893307 [Abstract] [Full Text] [Related]
6. Polycomb group proteins are essential for spinal cord development. Wang C, Zhao JJ, Lu CL, Han XD, An LS, Ma X. Front Biosci (Landmark Ed); 2010 Jun 01; 15(3):1018-22. PubMed ID: 20515739 [Abstract] [Full Text] [Related]
7. CD200-CD200R imbalance correlates with microglia and pro-inflammatory activation in rat spinal cords exposed to amniotic fluid in retinoic acid-induced spina bifida. Oria M, Figueira RL, Scorletti F, Sbragia L, Owens K, Li Z, Pathak B, Corona MU, Marotta M, Encinas JL, Peiro JL. Sci Rep; 2018 Jul 13; 8(1):10638. PubMed ID: 30006626 [Abstract] [Full Text] [Related]
8. Cryopreserved human umbilical cord versus acellular dermal matrix patches for in utero fetal spina bifida repair in a pregnant rat model. Mann LK, Won JH, Trenton NJ, Garnett J, Snowise S, Fletcher SA, Tseng SCG, Diehl MR, Papanna R. J Neurosurg Spine; 2020 Feb 01; 32(2):321-331. PubMed ID: 31675701 [Abstract] [Full Text] [Related]
9. miR-9*- and miR-124a-Mediated switching of chromatin remodelling complexes is altered in rat spina bifida aperta. Wei X, Li H, Miao J, Liu B, Zhan Y, Wu D, Zhang Y, Wang L, Fan Y, Gu H, Wang W, Yuan Z. Neurochem Res; 2013 Aug 01; 38(8):1605-15. PubMed ID: 23677776 [Abstract] [Full Text] [Related]
10. Spina bifida aperta induced by valproic acid and by all-trans-retinoic acid in the mouse: distinct differences in morphology and periods of sensitivity. Ehlers K, Stürje H, Merker HJ, Nau H. Teratology; 1992 Aug 01; 46(2):117-30. PubMed ID: 1440416 [Abstract] [Full Text] [Related]
11. Sensory neuron differentiation potential of in utero mesenchymal stem cell transplantation in rat fetuses with spina bifida aperta. Ma W, Wei X, Gu H, Li H, Guan K, Liu D, Chen L, Cao S, An D, Zhang H, Huang T, Miao J, Zhao G, Wu D, Liu B, Wang W, Yuan Z. Birth Defects Res A Clin Mol Teratol; 2015 Sep 01; 103(9):772-9. PubMed ID: 26172505 [Abstract] [Full Text] [Related]
12. Experimental dysraphism in the rat. Smith MT, Wissinger JP, Smith CG, Huntington HW. J Neurosurg; 1978 Nov 01; 49(5):725-9. PubMed ID: 361928 [Abstract] [Full Text] [Related]
13. Quantitative axial profiles of retinoic acid in the embryonic mouse spinal cord: 9-cis retinoic acid only detected after all-trans-retinoic acid levels are super-elevated experimentally. Ulven SM, Gundersen TE, Sakhi AK, Glover JC, Blomhoff R. Dev Dyn; 2001 Nov 01; 222(3):341-53. PubMed ID: 11747070 [Abstract] [Full Text] [Related]
14. Age-dependent retinoic acid regulation of gene expression distinguishes the cervical, thoracic, lumbar, and sacral spinal cord regions during development. Rubin WW, LaMantia AS. Dev Neurosci; 1999 Nov 01; 21(2):113-25. PubMed ID: 10449983 [Abstract] [Full Text] [Related]
15. Editorial: The spinal cord in spina bifida. Lancet; 1973 Oct 13; 2(7833):830-1. PubMed ID: 4126623 [No Abstract] [Full Text] [Related]
16. Different expression patterns of growth factors in rat fetuses with spina bifida aperta after in utero mesenchymal stromal cell transplantation. Li H, Miao J, Zhao G, Wu D, Liu B, Wei X, Cao S, Gu H, Zhang Y, Wang L, Fan Y, Yuan Z. Cytotherapy; 2014 Mar 13; 16(3):319-30. PubMed ID: 24364908 [Abstract] [Full Text] [Related]
17. Hyperglycemic condition disturbs the proliferation and cell death of neural progenitors in mouse embryonic spinal cord. Gao Q, Gao YM. Int J Dev Neurosci; 2007 Oct 13; 25(6):349-57. PubMed ID: 17888615 [Abstract] [Full Text] [Related]
18. Fibronectin expression in the developing human spinal cord, nerves, and ganglia. Krolo M, Vilović K, Sapunar D, Vrdoljak E, Saraga-Babic M. Croat Med J; 1998 Dec 13; 39(4):386-91. PubMed ID: 9841937 [Abstract] [Full Text] [Related]
19. Discontinuity of primary and secondary neural tube in spina bifida induced by retinoic acid in mice. Yasuda Y, Konishi H, Kihara T, Tanimura T. Teratology; 1990 Mar 13; 41(3):257-74. PubMed ID: 2183387 [Abstract] [Full Text] [Related]
20. Developmentally regulated expression of Sox9 and microRNAs 124, 128 and 23 in neuroepithelial stem cells in the developing spinal cord. Farrell BC, Power EM, Mc Dermott KW. Int J Dev Neurosci; 2011 Feb 13; 29(1):31-6. PubMed ID: 20937378 [Abstract] [Full Text] [Related] Page: [Next] [New Search]