These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


438 related items for PubMed ID: 17964950

  • 1. Methods for simulating the dynamics of complex biological processes.
    Schilstra MJ, Martin SR, Keating SM.
    Methods Cell Biol; 2008; 84():807-42. PubMed ID: 17964950
    [Abstract] [Full Text] [Related]

  • 2. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H, Kaznessis Y.
    J Chem Phys; 2005 Feb 01; 122(5):54103. PubMed ID: 15740306
    [Abstract] [Full Text] [Related]

  • 3. Stochastic simulations on a model of circadian rhythm generation.
    Miura S, Shimokawa T, Nomura T.
    Biosystems; 2008 Feb 01; 93(1-2):133-40. PubMed ID: 18585851
    [Abstract] [Full Text] [Related]

  • 4. Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations.
    Gómez-Uribe CA, Verghese GC.
    J Chem Phys; 2007 Jan 14; 126(2):024109. PubMed ID: 17228945
    [Abstract] [Full Text] [Related]

  • 5. Taming the complexity of biological pathways through parallel computing.
    Ballarini P, Guido R, Mazza T, Prandi D.
    Brief Bioinform; 2009 May 14; 10(3):278-88. PubMed ID: 19339382
    [Abstract] [Full Text] [Related]

  • 6. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation.
    Mélykúti B, Burrage K, Zygalakis KC.
    J Chem Phys; 2010 Apr 28; 132(16):164109. PubMed ID: 20441260
    [Abstract] [Full Text] [Related]

  • 7. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H, Kaznessis YN.
    J Chem Phys; 2005 Dec 01; 123(21):214106. PubMed ID: 16356038
    [Abstract] [Full Text] [Related]

  • 8. COAST: Controllable approximative stochastic reaction algorithm.
    Wagner H, Möller M, Prank K.
    J Chem Phys; 2006 Nov 07; 125(17):174104. PubMed ID: 17100426
    [Abstract] [Full Text] [Related]

  • 9. Numerical simulation of a Campbell-like stochastic delay model for bacteriophage infection.
    Carletti M.
    Math Med Biol; 2006 Dec 07; 23(4):297-310. PubMed ID: 16801387
    [Abstract] [Full Text] [Related]

  • 10. [Stochastic computer model of cellular microtubule dynamics].
    Shpil'man AA, Nadezhdina ES.
    Biofizika; 2006 Dec 07; 51(5):880-4. PubMed ID: 17131828
    [Abstract] [Full Text] [Related]

  • 11. Sequential estimation for prescribed statistical accuracy in stochastic simulation of biological systems.
    Sandmann W.
    Math Biosci; 2009 Sep 07; 221(1):43-53. PubMed ID: 19576907
    [Abstract] [Full Text] [Related]

  • 12. Stochasticity in physiologically based kinetics models: implications for cancer risk assessment.
    Péry AR, Bois FY.
    Risk Anal; 2009 Aug 07; 29(8):1182-91. PubMed ID: 19508449
    [Abstract] [Full Text] [Related]

  • 13. Insights into cytoskeletal behavior from computational modeling of dynamic microtubules in a cell-like environment.
    Gregoretti IV, Margolin G, Alber MS, Goodson HV.
    J Cell Sci; 2006 Nov 15; 119(Pt 22):4781-8. PubMed ID: 17093268
    [Abstract] [Full Text] [Related]

  • 14. Path ensembles and path sampling in nonequilibrium stochastic systems.
    Harland B, Sun SX.
    J Chem Phys; 2007 Sep 14; 127(10):104103. PubMed ID: 17867733
    [Abstract] [Full Text] [Related]

  • 15. Generalized binomial tau-leap method for biochemical kinetics incorporating both delay and intrinsic noise.
    Leier A, Marquez-Lago TT, Burrage K.
    J Chem Phys; 2008 May 28; 128(20):205107. PubMed ID: 18513050
    [Abstract] [Full Text] [Related]

  • 16. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox.
    Vellela M, Qian H.
    Bull Math Biol; 2007 Jul 28; 69(5):1727-46. PubMed ID: 17318672
    [Abstract] [Full Text] [Related]

  • 17. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
    Griffith M, Courtney T, Peccoud J, Sanders WH.
    Bioinformatics; 2006 Nov 15; 22(22):2782-9. PubMed ID: 16954141
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Multiresolution stochastic simulations of reaction-diffusion processes.
    Bayati B, Chatelain P, Koumoutsakos P.
    Phys Chem Chem Phys; 2008 Oct 21; 10(39):5963-6. PubMed ID: 18825283
    [Abstract] [Full Text] [Related]

  • 20. Developing Itô stochastic differential equation models for neuronal signal transduction pathways.
    Manninen T, Linne ML, Ruohonen K.
    Comput Biol Chem; 2006 Aug 21; 30(4):280-91. PubMed ID: 16880117
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.