These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
281 related items for PubMed ID: 17965432
1. Overexpression of the 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 increases sulfation of chondroitin sulfate in the apical pathway of MDCK II cells. Dick G, Grøndahl F, Prydz K. Glycobiology; 2008 Jan; 18(1):53-65. PubMed ID: 17965432 [Abstract] [Full Text] [Related]
2. PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells. Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Maccarana M, Prydz K. Glycobiology; 2015 Jan; 25(1):30-41. PubMed ID: 25138304 [Abstract] [Full Text] [Related]
3. Neutralization of endomembrane compartments in epithelial MDCK cells affects proteoglycan synthesis in the apical secretory pathway. Grøndahl F, Tveit H, Prydz K. Biochem J; 2009 Mar 15; 418(3):517-28. PubMed ID: 19076065 [Abstract] [Full Text] [Related]
4. Protein core-dependent glycosaminoglycan modification and glycosaminoglycan-dependent polarized sorting in epithelial Madin-Darby canine kidney cells. Hafte TT, Fagereng GL, Prydz K, Grøndahl F, Tveit H. Glycobiology; 2011 Apr 15; 21(4):457-66. PubMed ID: 21062785 [Abstract] [Full Text] [Related]
5. Differences in the apical and basolateral pathways for glycosaminoglycan biosynthesis in Madin-Darby canine kidney cells. Vuong TT, Prydz K, Tveit H. Glycobiology; 2006 Apr 15; 16(4):326-32. PubMed ID: 16394120 [Abstract] [Full Text] [Related]
6. N-Glycan synthesis in the apical and basolateral secretory pathway of epithelial MDCK cells and the influence of a glycosaminoglycan domain. Moen A, Hafte TT, Tveit H, Egge-Jacobsen W, Prydz K. Glycobiology; 2011 Nov 15; 21(11):1416-25. PubMed ID: 21673010 [Abstract] [Full Text] [Related]
7. Depletion of hepatic 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and sulfate in rats by xenobiotics that are sulfated. Kim HJ, Cho JH, Klaassen CD. J Pharmacol Exp Ther; 1995 Nov 15; 275(2):654-8. PubMed ID: 7473151 [Abstract] [Full Text] [Related]
8. A secretory Golgi bypass route to the apical surface domain of epithelial MDCK cells. Tveit H, Akslen LK, Fagereng GL, Tranulis MA, Prydz K. Traffic; 2009 Nov 15; 10(11):1685-95. PubMed ID: 19765262 [Abstract] [Full Text] [Related]
9. Sulfation in the Golgi lumen of Madin-Darby canine kidney cells is inhibited by brefeldin A and depends on a factor present in the cytoplasm and on Golgi membranes. Fjeldstad K, Pedersen ME, Vuong TT, Kolset SO, Nordstrand LM, Prydz K. J Biol Chem; 2002 Sep 27; 277(39):36272-9. PubMed ID: 12138122 [Abstract] [Full Text] [Related]
10. Sulfation of acetaminophen in isolated rat hepatocytes. Relationship to sulfate ion concentrations and intracellular levels of 3'-phosphoadenosine-5'-phosphosulfate. Sweeny DJ, Reinke LA. Drug Metab Dispos; 1988 Sep 27; 16(5):712-5. PubMed ID: 2906595 [Abstract] [Full Text] [Related]
11. Identification and partial purification of PAPS translocase. Ozeran JD, Westley J, Schwartz NB. Biochemistry; 1996 Mar 26; 35(12):3695-703. PubMed ID: 8619989 [Abstract] [Full Text] [Related]
12. A proteoglycan undergoes different modifications en route to the apical and basolateral surfaces of Madin-Darby canine kidney cells. Tveit H, Dick G, Skibeli V, Prydz K. J Biol Chem; 2005 Aug 19; 280(33):29596-603. PubMed ID: 15980070 [Abstract] [Full Text] [Related]
13. Expression and the role of 3'-phosphoadenosine 5'-phosphosulfate transporters in human colorectal carcinoma. Kamiyama S, Ichimiya T, Ikehara Y, Takase T, Fujimoto I, Suda T, Nakamori S, Nakamura M, Nakayama F, Irimura T, Nakanishi H, Watanabe M, Narimatsu H, Nishihara S. Glycobiology; 2011 Feb 19; 21(2):235-46. PubMed ID: 20978009 [Abstract] [Full Text] [Related]
14. Protamine increases the affinity of 3'-phosphoadenosine 5'-phosphosulfate toward a sulfotransferase from chicken embryo epiphyseal cartilage. Salac ML, Santos JA, Mourão PA. Biochim Biophys Acta; 1986 Oct 01; 883(3):605-9. PubMed ID: 3092873 [Abstract] [Full Text] [Related]
15. Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter. Kamiyama S, Suda T, Ueda R, Suzuki M, Okubo R, Kikuchi N, Chiba Y, Goto S, Toyoda H, Saigo K, Watanabe M, Narimatsu H, Jigami Y, Nishihara S. J Biol Chem; 2003 Jul 11; 278(28):25958-63. PubMed ID: 12716889 [Abstract] [Full Text] [Related]
16. Sulfation and sulfotransferases 5: the importance of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the regulation of sulfation. Klaassen CD, Boles JW. FASEB J; 1997 May 11; 11(6):404-18. PubMed ID: 9194521 [Abstract] [Full Text] [Related]
17. Transport of UDP-galactose into the Golgi lumen regulates the biosynthesis of proteoglycans. Toma L, Pinhal MA, Dietrich CP, Nader HB, Hirschberg CB. J Biol Chem; 1996 Feb 16; 271(7):3897-901. PubMed ID: 8632010 [Abstract] [Full Text] [Related]
18. The 3'-phosphoadenosine 5'-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y, Nishihara S. PLoS One; 2009 Dec 11; 4(12):e8262. PubMed ID: 20011239 [Abstract] [Full Text] [Related]
19. Molybdate depletes hepatic 3-phosphoadenosine 5-phosphosulfate and impairs the sulfation of acetaminophen in rats. Oguro T, Gregus Z, Madhu C, Liu L, Klaassen CD. J Pharmacol Exp Ther; 1994 Sep 11; 270(3):1145-51. PubMed ID: 7932164 [Abstract] [Full Text] [Related]
20. Homeostasis of sulfate and 3'-phosphoadenosine 5'-phosphosulfate in rats after acetaminophen administration. Kim HJ, Rozman P, Madhu C, Klaassen CD. J Pharmacol Exp Ther; 1992 Jun 11; 261(3):1015-21. PubMed ID: 1602369 [Abstract] [Full Text] [Related] Page: [Next] [New Search]