These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
473 related items for PubMed ID: 17965713
41. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Kim Y, Park S, Gilmour SJ, Thomashow MF. Plant J; 2013 Aug; 75(3):364-76. PubMed ID: 23581962 [Abstract] [Full Text] [Related]
42. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF. Plant Physiol; 2001 Nov; 127(3):910-7. PubMed ID: 11706173 [Abstract] [Full Text] [Related]
43. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Gehan MA, Park S, Gilmour SJ, An C, Lee CM, Thomashow MF. Plant J; 2015 Nov; 84(4):682-93. PubMed ID: 26369909 [Abstract] [Full Text] [Related]
44. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Fowler S, Thomashow MF. Plant Cell; 2002 Aug; 14(8):1675-90. PubMed ID: 12172015 [Abstract] [Full Text] [Related]
45. The low temperature response pathways for cold acclimation and vernalization are independent. Bond DM, Dennis ES, Finnegan EJ. Plant Cell Environ; 2011 Oct; 34(10):1737-48. PubMed ID: 21631537 [Abstract] [Full Text] [Related]
46. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Siddiqua M, Nassuth A. Plant Cell Environ; 2011 Aug; 34(8):1345-59. PubMed ID: 21486303 [Abstract] [Full Text] [Related]
47. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Hu Y, Jiang L, Wang F, Yu D. Plant Cell; 2013 Aug; 25(8):2907-24. PubMed ID: 23933884 [Abstract] [Full Text] [Related]
48. Freezing treatment under light conditions leads to a dramatic enhancement of freezing tolerance in cold-acclimated Arabidopsis. Sugita K, Takahashi S, Uemura M, Kawamura Y. Plant Cell Environ; 2024 Aug; 47(8):2971-2985. PubMed ID: 38630014 [Abstract] [Full Text] [Related]
49. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Meiri D, Breiman A. Plant J; 2009 Aug; 59(3):387-99. PubMed ID: 19366428 [Abstract] [Full Text] [Related]
50. Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana. Liu Y, Dang P, Liu L, He C. Plant Cell Rep; 2019 May; 38(5):511-519. PubMed ID: 30652229 [Abstract] [Full Text] [Related]
51. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana. Shi Y, Huang J, Sun T, Wang X, Zhu C, Ai Y, Gu H. J Integr Plant Biol; 2017 Feb; 59(2):118-133. PubMed ID: 28009483 [Abstract] [Full Text] [Related]
52. Interaction between the light quality and flowering time pathways in Arabidopsis. Adams S, Allen T, Whitelam GC. Plant J; 2009 Oct; 60(2):257-67. PubMed ID: 19563438 [Abstract] [Full Text] [Related]
53. Plant genetics. Finding new ways to protect drought-stricken plants. Moffat AS. Science; 2002 May 17; 296(5571):1226-9. PubMed ID: 12016289 [No Abstract] [Full Text] [Related]
54. Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. Chung S, Parish RW. Plant J; 2008 Apr 17; 54(1):15-29. PubMed ID: 18088305 [Abstract] [Full Text] [Related]
55. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V. Plant Cell Environ; 2006 Jul 17; 29(7):1259-72. PubMed ID: 17080948 [Abstract] [Full Text] [Related]
56. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Plant Physiol; 2000 Dec 17; 124(4):1854-65. PubMed ID: 11115899 [Abstract] [Full Text] [Related]
58. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Guo Y, Xiong L, Ishitani M, Zhu JK. Proc Natl Acad Sci U S A; 2002 May 28; 99(11):7786-91. PubMed ID: 12032361 [Abstract] [Full Text] [Related]
59. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P. Plant J; 2008 Jan 28; 53(2):264-74. PubMed ID: 17999647 [Abstract] [Full Text] [Related]
60. Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M. Plant Cell Physiol; 2008 Aug 28; 49(8):1237-49. PubMed ID: 18635580 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]