These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
241 related items for PubMed ID: 17971244
61. An AlgU-Regulated Antisense Transcript Encoded within the Pseudomonas syringae fleQ Gene Has a Positive Effect on Motility. Markel E, Dalenberg H, Monteil CL, Vinatzer BA, Swingle B. J Bacteriol; 2018 Apr 01; 200(7):. PubMed ID: 29311280 [Abstract] [Full Text] [Related]
62. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N, Panopoulos NJ, Kokkinidis M. BMC Microbiol; 2012 Sep 02; 12():188. PubMed ID: 22937899 [Abstract] [Full Text] [Related]
63. Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. Records AR, Gross DC. J Bacteriol; 2010 Jul 02; 192(14):3584-96. PubMed ID: 20472799 [Abstract] [Full Text] [Related]
65. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae. Zúñiga M, Gómez-Escoín CL, González-Candelas F. BMC Evol Biol; 2011 Feb 01; 11():34. PubMed ID: 21284862 [Abstract] [Full Text] [Related]
66. In silico prediction of drug targets in phytopathogenic Pseudomonas syringae pv. phaseolicola: charting a course for agrigenomics translation research. Katara P, Grover A, Sharma V. OMICS; 2012 Dec 01; 16(12):700-6. PubMed ID: 23215808 [Abstract] [Full Text] [Related]
67. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK. Mol Plant Microbe Interact; 2003 Dec 01; 16(12):1106-17. PubMed ID: 14651344 [Abstract] [Full Text] [Related]
68. De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Reinhardt JA, Baltrus DA, Nishimura MT, Jeck WR, Jones CD, Dangl JL. Genome Res; 2009 Feb 01; 19(2):294-305. PubMed ID: 19015323 [Abstract] [Full Text] [Related]
69. Characterization of five ECF sigma factors in the genome of Pseudomonas syringae pv. syringae B728a. Thakur PB, Vaughn-Diaz VL, Greenwald JW, Gross DC. PLoS One; 2013 Feb 01; 8(3):e58846. PubMed ID: 23516563 [Abstract] [Full Text] [Related]
70. Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. Shi X, Wegener-Feldbrügge S, Huntley S, Hamann N, Hedderich R, Søgaard-Andersen L. J Bacteriol; 2008 Jan 01; 190(2):613-24. PubMed ID: 17993514 [Abstract] [Full Text] [Related]
71. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. Freeman BC, Chen C, Yu X, Nielsen L, Peterson K, Beattie GA. J Bacteriol; 2013 Oct 01; 195(20):4742-52. PubMed ID: 23955010 [Abstract] [Full Text] [Related]
72. P2CS: updates of the prokaryotic two-component systems database. Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M. Nucleic Acids Res; 2015 Jan 01; 43(Database issue):D536-41. PubMed ID: 25324303 [Abstract] [Full Text] [Related]
73. Comparative Genomic Analysis of Two-Component Signal Transduction Systems in Probiotic Lactobacillus casei. Yu S, Peng Y, Chen W, Deng Y, Guo Y. Indian J Microbiol; 2014 Sep 01; 54(3):293-301. PubMed ID: 24891736 [Abstract] [Full Text] [Related]
74. Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S. PLoS One; 2010 Apr 19; 5(4):e10224. PubMed ID: 20419105 [Abstract] [Full Text] [Related]
75. Genome sequence of the plant pathogen Pseudomonas syringae pv. panici LMG 2367. Liu H, Qiu H, Zhao W, Cui Z, Ibrahim M, Jin G, Li B, Zhu B, Xie GL. J Bacteriol; 2012 Oct 19; 194(20):5693-4. PubMed ID: 23012277 [Abstract] [Full Text] [Related]
77. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. Berti AD, Thomas MG. J Bacteriol; 2009 Jul 19; 191(14):4594-604. PubMed ID: 19482931 [Abstract] [Full Text] [Related]
78. Recombineering using RecTE from Pseudomonas syringae. Swingle B, Bao Z, Markel E, Chambers A, Cartinhour S. Appl Environ Microbiol; 2010 Aug 19; 76(15):4960-8. PubMed ID: 20543050 [Abstract] [Full Text] [Related]
79. Remodeling of Lipid A in Pseudomonas syringae pv. phaseolicola In Vitro. Gerster T, Wröbel M, Hofstaedter CE, Schwudke D, Ernst RK, Ranf S, Gisch N. Int J Mol Sci; 2022 Feb 11; 23(4):. PubMed ID: 35216122 [Abstract] [Full Text] [Related]
80. The Histidine Kinase CckA Is Directly Inhibited by a Response Regulator-like Protein in a Negative Feedback Loop. Vega-Baray B, Domenzain C, Poggio S, Dreyfus G, Camarena L. mBio; 2022 Aug 30; 13(4):e0148122. PubMed ID: 35876508 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]