These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ. J Biomed Mater Res A; 2007 Jun 15; 81(4):994-1004. PubMed ID: 17252559 [Abstract] [Full Text] [Related]
5. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Colloids Surf B Biointerfaces; 2009 Nov 01; 74(1):159-66. PubMed ID: 19679453 [Abstract] [Full Text] [Related]
7. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ. J Biomed Mater Res A; 2008 Jan 01; 84(1):265-72. PubMed ID: 17607739 [Abstract] [Full Text] [Related]
8. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A, Rebelo AH, Lemos AF, Rocha JH, Ventura JM, Ferreira JM. Dent Mater; 2008 Oct 01; 24(10):1374-80. PubMed ID: 18417203 [Abstract] [Full Text] [Related]
9. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior. Xu JL, Khor KA, Gu YW, Kumar R, Cheang P. Biomaterials; 2005 May 01; 26(15):2197-207. PubMed ID: 15585221 [Abstract] [Full Text] [Related]
11. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL. J Biomed Mater Res A; 2009 Oct 01; 91(1):175-86. PubMed ID: 18780358 [Abstract] [Full Text] [Related]
12. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Aina V, Bergandi L, Lusvardi G, Malavasi G, Imrie FE, Gibson IR, Cerrato G, Ghigo D. Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1132-42. PubMed ID: 23827552 [Abstract] [Full Text] [Related]
13. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure. Wang Y, Hassan MS, Gunawan P, Lau R, Wang X, Xu R. J Colloid Interface Sci; 2009 Nov 01; 339(1):69-77. PubMed ID: 19660764 [Abstract] [Full Text] [Related]
14. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method. Padilla S, Sánchez-Salcedo S, Vallet-Regí M. J Biomed Mater Res A; 2005 Oct 01; 75(1):63-72. PubMed ID: 16088904 [Abstract] [Full Text] [Related]
15. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. Xu JL, Khor KA. J Inorg Biochem; 2007 Feb 01; 101(2):187-95. PubMed ID: 17095092 [Abstract] [Full Text] [Related]
16. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. Zhang L, Rodriguez J, Raez J, Myles AJ, Fenniri H, Webster TJ. Nanotechnology; 2009 Apr 29; 20(17):175101. PubMed ID: 19420581 [Abstract] [Full Text] [Related]
17. Development of nanohydroxyapatite/polycarbonate composite for bone repair. Liao Jianguo, Zhang Li, Zuo Yi, Wang Huanan, Li Jidong, Zou Qin, Li Yubao. J Biomater Appl; 2009 Jul 29; 24(1):31-45. PubMed ID: 19386668 [Abstract] [Full Text] [Related]