These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
383 related items for PubMed ID: 17983721
1. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Rowe OF, Johnson DB. Syst Appl Microbiol; 2008 Mar; 31(1):68-77. PubMed ID: 17983721 [Abstract] [Full Text] [Related]
2. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads. Giaveno A, Lavalle L, Guibal E, Donati E. J Microbiol Methods; 2008 Mar; 72(3):227-34. PubMed ID: 18294712 [Abstract] [Full Text] [Related]
3. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K, Auvinen H, Johnson DB. Biotechnol Bioeng; 2008 Nov 01; 101(4):739-50. PubMed ID: 18496880 [Abstract] [Full Text] [Related]
4. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material. Ebrahimi S, Fernández Morales FJ, Kleerebezem R, Heijnen JJ, van Loosdrecht MC. Biotechnol Bioeng; 2005 May 20; 90(4):462-72. PubMed ID: 15772947 [Abstract] [Full Text] [Related]
5. Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae. Bryan CG, Johnson DB. FEMS Microbiol Lett; 2008 Nov 20; 288(2):149-55. PubMed ID: 18803673 [Abstract] [Full Text] [Related]
6. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: Experiments and modeling. Jaisankar S, Modak JM. Biotechnol Prog; 2009 Nov 20; 25(5):1328-42. PubMed ID: 19610075 [Abstract] [Full Text] [Related]
7. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Yujian W, Xiaojuan Y, Wei T, Hongyu L. J Microbiol Methods; 2007 Feb 20; 68(2):212-7. PubMed ID: 16979768 [Abstract] [Full Text] [Related]
8. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Johnson DB, Okibe N, Roberto FF. Arch Microbiol; 2003 Jul 20; 180(1):60-8. PubMed ID: 12802481 [Abstract] [Full Text] [Related]
9. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor. Park D, Lee DS, Park JM. Water Sci Technol; 2005 Jul 20; 51(6-7):59-68. PubMed ID: 16003962 [Abstract] [Full Text] [Related]
10. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor. Dave SR. Bioresour Technol; 2008 Nov 20; 99(16):7803-6. PubMed ID: 18325759 [Abstract] [Full Text] [Related]
11. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors. Jones RM, Johnson DB. Environ Sci Technol; 2016 Aug 02; 50(15):8239-45. PubMed ID: 27377871 [Abstract] [Full Text] [Related]
12. The isolation and use of iron-oxidizing, moderately thermophilic acidophiles from the Collie coal mine for the generation of ferric iron leaching solution. Kinnunen PH, Robertson WJ, Plumb JJ, Gibson JA, Nichols PD, Franzmann PD, Puhakka JA. Appl Microbiol Biotechnol; 2003 Feb 02; 60(6):748-53. PubMed ID: 12664157 [Abstract] [Full Text] [Related]
13. Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells. Kim TW, Kim CJ, Chang YK, Ryu HW, Cho KS. Biotechnol Prog; 2002 Feb 02; 18(4):752-9. PubMed ID: 12153309 [Abstract] [Full Text] [Related]
14. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant. Joe SJ, Suto K, Inoie C, Chida T. J Biosci Bioeng; 2007 Aug 02; 104(2):117-23. PubMed ID: 17884656 [Abstract] [Full Text] [Related]
15. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB. Int J Syst Evol Microbiol; 2009 May 02; 59(Pt 5):1082-9. PubMed ID: 19406797 [Abstract] [Full Text] [Related]
16. Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation. Mazuelos A, Moreno JM, Carranza F, Palomino C, Torres A, Villalobo E. J Ind Microbiol Biotechnol; 2012 Dec 02; 39(12):1851-8. PubMed ID: 22911238 [Abstract] [Full Text] [Related]
17. Comparative study of using different materials as bacterial carriers to treat hydrogen sulfide. Li Z, Sun T, Zhu N, Cao X, Jia J. Appl Microbiol Biotechnol; 2008 Dec 02; 81(3):579-88. PubMed ID: 18949473 [Abstract] [Full Text] [Related]
18. Immobilization of Acidithiobacillus ferrooxidans on cotton gauze for biological oxidation of ferrous ions in a batch bioreactor. Zhu N, Shi C, Shang R, Yang C, Xu Z, Wu P. Biotechnol Appl Biochem; 2017 Sep 02; 64(5):727-734. PubMed ID: 26621070 [Abstract] [Full Text] [Related]
19. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine-drainage. Wood TA, Murray KR, Burgess JG. Appl Microbiol Biotechnol; 2001 Aug 02; 56(3-4):560-5. PubMed ID: 11549038 [Abstract] [Full Text] [Related]
20. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Dopson M, Halinen AK, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindström EB, Puhakka JA. Biotechnol Bioeng; 2007 Aug 01; 97(5):1205-15. PubMed ID: 17187443 [Abstract] [Full Text] [Related] Page: [Next] [New Search]