These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
95 related items for PubMed ID: 17986524
21. Light resonance energy transfer-based methods in the study of G protein-coupled receptor oligomerization. Gandía J, Lluís C, Ferré S, Franco R, Ciruela F. Bioessays; 2008 Jan; 30(1):82-9. PubMed ID: 18081019 [Abstract] [Full Text] [Related]
22. Stimulation of the neurokinin 3 receptor activates protein kinase C epsilon and protein kinase D in enteric neurons. Poole DP, Amadesi S, Rozengurt E, Thacker M, Bunnett NW, Furness JB. Am J Physiol Gastrointest Liver Physiol; 2008 May; 294(5):G1245-56. PubMed ID: 18308856 [Abstract] [Full Text] [Related]
23. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor. Steinmeyer R, Harms GS. Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253 [Abstract] [Full Text] [Related]
24. Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development. Philipp M, Berger IM, Just S, Caron MG. J Biol Chem; 2014 Sep 19; 289(38):26119-26130. PubMed ID: 25104355 [Abstract] [Full Text] [Related]
25. Human substance P receptor undergoes agonist-dependent phosphorylation by G protein-coupled receptor kinase 5 in vitro. Warabi K, Richardson MD, Barry WT, Yamaguchi K, Roush ED, Nishimura K, Kwatra MM. FEBS Lett; 2002 Jun 19; 521(1-3):140-4. PubMed ID: 12067742 [Abstract] [Full Text] [Related]
26. Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Blanquart C, Achi J, Issad T. Biochem Pharmacol; 2008 Oct 01; 76(7):873-83. PubMed ID: 18718450 [Abstract] [Full Text] [Related]
27. Cellular BRET assay suggests a conformational rearrangement of preformed TrkB/Shc complexes following BDNF-dependent activation. De Vries L, Finana F, Cachoux F, Vacher B, Sokoloff P, Cussac D. Cell Signal; 2010 Jan 01; 22(1):158-65. PubMed ID: 19781635 [Abstract] [Full Text] [Related]
28. A predicted amphipathic helix mediates plasma membrane localization of GRK5. Thiyagarajan MM, Stracquatanio RP, Pronin AN, Evanko DS, Benovic JL, Wedegaertner PB. J Biol Chem; 2004 Apr 23; 279(17):17989-95. PubMed ID: 14976207 [Abstract] [Full Text] [Related]
29. Betagamma subunits of G(i/o) suppress EGF-induced ERK5 phosphorylation, whereas ERK1/2 phosphorylation is enhanced. Obara Y, Okano Y, Ono S, Yamauchi A, Hoshino T, Kurose H, Nakahata N. Cell Signal; 2008 Jul 23; 20(7):1275-83. PubMed ID: 18407464 [Abstract] [Full Text] [Related]
30. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases. Komolov KE, Bhardwaj A, Benovic JL. J Biol Chem; 2015 Aug 21; 290(34):20629-20647. PubMed ID: 26032409 [Abstract] [Full Text] [Related]
31. NK1 receptor-mediated endothelium-dependent relaxation and contraction with different sensitivity to post-receptor signaling in pulmonary arteries. Miike T, Shirahase H, Kanda M, Kunishiro K, Kurahashi K. Vascul Pharmacol; 2009 Aug 21; 51(2-3):147-53. PubMed ID: 19539781 [Abstract] [Full Text] [Related]
32. Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. Gandia J, Galino J, Amaral OB, Soriano A, Lluís C, Franco R, Ciruela F. FEBS Lett; 2008 Sep 03; 582(20):2979-84. PubMed ID: 18675812 [Abstract] [Full Text] [Related]
33. Utilizing a structure-based docking approach to develop potent G protein-coupled receptor kinase (GRK) 2 and 5 inhibitors. Waldschmidt HV, Bouley R, Kirchhoff PD, Lee P, Tesmer JJG, Larsen SD. Bioorg Med Chem Lett; 2018 May 15; 28(9):1507-1515. PubMed ID: 29627263 [Abstract] [Full Text] [Related]
34. Mutagenesis of important amino acid reveals unconventional homologous internalization of beta(1)-adrenergic receptor. Hossain M, Rashid M, Bhuiyan MA, Nakamura T, Ozaki M, Nagatomo T. Life Sci; 2009 Aug 12; 85(7-8):339-44. PubMed ID: 19580817 [Abstract] [Full Text] [Related]
35. Membrane orientation and binding determinants of G protein-coupled receptor kinase 5 as assessed by combined vibrational spectroscopic studies. Yang P, Glukhova A, Tesmer JJ, Chen Z. PLoS One; 2013 Aug 12; 8(11):e82072. PubMed ID: 24278472 [Abstract] [Full Text] [Related]
36. Targeting GRK2 and GRK5 for treating chronic degenerative diseases: Advances and future perspectives. Zhang Y, Zhang J, Wang J, Chen H, Ouyang L, Wang Y. Eur J Med Chem; 2022 Dec 05; 243():114668. PubMed ID: 36055000 [Abstract] [Full Text] [Related]
37. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Jensen AA, Hansen JL, Sheikh SP, Bräuner-Osborne H. Eur J Biochem; 2002 Oct 05; 269(20):5076-87. PubMed ID: 12383267 [Abstract] [Full Text] [Related]
38. Synthesis of specific bivalent probes that functionally interact with 5-HT(4) receptor dimers. Russo O, Berthouze M, Giner M, Soulier JL, Rivail L, Sicsic S, Lezoualc'h F, Jockers R, Berque-Bestel I. J Med Chem; 2007 Sep 06; 50(18):4482-92. PubMed ID: 17676726 [Abstract] [Full Text] [Related]
39. Measuring ligand-dependent and ligand-independent interactions between nuclear receptors and associated proteins using Bioluminescence Resonance Energy Transfer (BRET). Koterba KL, Rowan BG. Nucl Recept Signal; 2006 Jul 26; 4():e021. PubMed ID: 17016546 [Abstract] [Full Text] [Related]
40. Selectivity mechanism of GRK2/5 inhibition through in silico investigation. Wu Y, Wang S, Wang H, Hu B, Wang J. Comput Biol Chem; 2022 Dec 26; 101():107786. PubMed ID: 36399961 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]