These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
224 related items for PubMed ID: 1798706
41. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme. Hofsteenge J, Moldow C, Vicentini AM, Zelenko O, Jarai-Kote Z, Neumann U. Biochemistry; 1998 Jun 30; 37(26):9250-7. PubMed ID: 9649305 [Abstract] [Full Text] [Related]
42. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues. Sorrentino S, Naddeo M, Russo A, D'Alessio G. Biochemistry; 2003 Sep 02; 42(34):10182-90. PubMed ID: 12939146 [Abstract] [Full Text] [Related]
44. Conformational characterization of human angiogenin by limited proteolysis. Harper JW, Vallee BL. J Protein Chem; 1988 Aug 02; 7(4):355-63. PubMed ID: 3151251 [Abstract] [Full Text] [Related]
45. Three-dimensional structure of human RNase 1 delta N7 at 1.9 A resolution. Pous J, Mallorquí-Fernández G, Peracaula R, Terzyan SS, Futami J, Tada H, Yamada H, Seno M, de Llorens R, Gomis-Rüth FX, Coll M. Acta Crystallogr D Biol Crystallogr; 2001 Apr 02; 57(Pt 4):498-505. PubMed ID: 11264578 [Abstract] [Full Text] [Related]
46. Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease. Acharya KR, Shapiro R, Allen SC, Riordan JF, Vallee BL. Proc Natl Acad Sci U S A; 1994 Apr 12; 91(8):2915-9. PubMed ID: 8159679 [Abstract] [Full Text] [Related]
47. Identification of functional arginines in human angiogenin by site-directed mutagenesis. Shapiro R, Vallee BL. Biochemistry; 1992 Dec 15; 31(49):12477-85. PubMed ID: 1281426 [Abstract] [Full Text] [Related]
48. Role of the surface loop on the structure and biological activity of angiogenin. Jang SH, Song HD, Kang DK, Chang SI, Kim MK, Cho KH, Scheraga HA, Shin HC. BMB Rep; 2009 Dec 31; 42(12):829-33. PubMed ID: 20044956 [Abstract] [Full Text] [Related]
49. Emerging biological functions of ribonuclease 1 and angiogenin. Garnett ER, Raines RT. Crit Rev Biochem Mol Biol; 2022 Jun 31; 57(3):244-260. PubMed ID: 34886717 [Abstract] [Full Text] [Related]
51. Refinement of the crystal structure of ribonuclease S. Comparison with and between the various ribonuclease A structures. Kim EE, Varadarajan R, Wyckoff HW, Richards FM. Biochemistry; 1992 Dec 15; 31(49):12304-14. PubMed ID: 1463719 [Abstract] [Full Text] [Related]
52. The RNase a superfamily: generation of diversity and innate host defense. Dyer KD, Rosenberg HF. Mol Divers; 2006 Nov 15; 10(4):585-97. PubMed ID: 16969722 [Abstract] [Full Text] [Related]
58. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes. Quirk DJ, Park C, Thompson JE, Raines RT. Biochemistry; 1998 Dec 22; 37(51):17958-64. PubMed ID: 9922164 [Abstract] [Full Text] [Related]
59. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. Kobe B, Deisenhofer J. J Mol Biol; 1996 Dec 20; 264(5):1028-43. PubMed ID: 9000628 [Abstract] [Full Text] [Related]
60. Molecular cloning of four novel murine ribonuclease genes: unusual expansion within the ribonuclease A gene family. Batten D, Dyer KD, Domachowske JB, Rosenberg HF. Nucleic Acids Res; 1997 Nov 01; 25(21):4235-9. PubMed ID: 9336452 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]