These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


365 related items for PubMed ID: 17990562

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Enhanced phytoextraction: in search of EDTA alternatives.
    Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FM, Verloo MG.
    Int J Phytoremediation; 2004; 6(2):95-109. PubMed ID: 15328977
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E, Ruttens A, Hopgood M, Lesage E, Tack FM.
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [Abstract] [Full Text] [Related]

  • 6. Effects of plant growth-promoting bacteria on EDTA-assisted phytostabilization of heavy metals in a contaminated calcareous soil.
    Hamidpour M, Nemati H, Abbaszadeh Dahaji P, Roosta HR.
    Environ Geochem Health; 2020 Aug; 42(8):2535-2545. PubMed ID: 31583504
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF, Irtelli B, Baker AJ, Navari-Izzo F.
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FM.
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants.
    Ruiz E, Rodríguez L, Alonso-Azcárate J.
    Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E, Meers E, Vervaeke P, Lamsal S, Hopgood M, Tack FM, Verloo MG.
    Int J Phytoremediation; 2005 May; 7(2):143-52. PubMed ID: 16128445
    [Abstract] [Full Text] [Related]

  • 18. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.
    Du RJ, He EK, Tang YT, Hu PJ, Ying RR, Morel JL, Qiu RL.
    Int J Phytoremediation; 2011 May; 13(10):1024-36. PubMed ID: 21972569
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C, Shen Z, Li X.
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.